3D Echo: Guidelines for Acquisition and Imaging

Stephen H. Little, MD

John S. Dunn Chair in Cardiovascular Research and Education, Associate professor, Weill Cornell Medicine

shlittle@houstonmethodist.org

- Personal research support: Abbott Structural Heart; Medtronic
- Institutional support: Abbott, Medtronic, Edwards, Boston Scientific

European Heart Journal – Cardiovascular Imaging (2012) **13**, 1–46 doi:10.1093/ehjci/jer316

EAE/ASE RECOMMENDATIONS

EAE/ASE Recommendations for Image Acquisition and Display Using Three-Dimensional Echocardiography

Roberto M. Lang, MD, FASE^{*‡}, Luigi P. Badano, MD, FESC^{†‡}, Wendy Tsang, MD^{*}, David H. Adams, MD^{*}, Eustachio Agricola, MD[†], Thomas Buck, MD, FESC[†], Francesco F. Faletra, MD[†], Andreas Franke, MD, FESC[†], Judy Hung, MD, FASE^{*}, Leopoldo Pérez de Isla, MD, PhD, FESC[†], Otto Kamp, MD, PhD, FESC[†], Jaroslaw D. Kasprzak, MD, FESC[†], Patrizio Lancellotti, MD, PhD, FESC[†], Thomas H. Marwick, MBBS, PhD^{*}, Marti L. McCulloch, RDCS, FASE^{*}, Mark J. Monaghan, PhD, FESC[†], Petros Nihoyannopoulos, MD, FESC[†], Natesa G. Pandian, MD^{*}, Patricia A. Pellikka, MD, FASE^{*}, Mauro Pepi, MD, FESC[†], David A. Roberson, MD, FASE^{*}, Stanton K. Shernan, MD, FASE^{*}, Girish S. Shirali, MBBS, FASE^{*}, Lissa Sugeng, MD^{*}, Folkert J. Ten Cate, MD[†], Mani A. Vannan, MBBS, FASE^{*}, Jose Luis Zamorano, MD, FESC, FASE[†], and William A. Zoghbi, MD, FASE^{*}

2D vs 3D Echocardiography

Courtesy of J. Maalouf

Good 2D Equals Good 3D

Modes of Acquisition

Wide angle/Full volume

Methodist

DEBAKEY HEART & VASCULAR CENTER

Narrow Volume

Zoom Mode a.k.a. "pre-cropped"

Zoom Mode

- Indications:
 - ➢Prolapse
 - ≻Flail
 - ➢ Perforation
 - ➤Stenosis
- Less prone to artifacts
- Beware of losing spatial orientation

3D Full Volume Acquisition

Wide Angle/Full Volume Cropping

Single Beat VS Multi-Beat

Multi-beat Acquisition

- -Large Volume
- -Density (Med-Low)
- -Chamber Quantification
- -Higher Frame Rate
- –*Beware of Stitch Artifacts*

Low Frame Rate

High Frame Rate

1 Number of Sub-volumes = 1 Frame Rate

1 Number of Sub-volumes = 1 Frame Rate

\downarrow Depth = \uparrow Frame Rate

Stitch Artifact

/ Drop-out

Display Object of Interest

Volume Rendering

Surface Rendering

Wire-Frame

2D Tomographic Slices

3D TEE Acquisition

Surgeon's View

Lang RM, Tsang W, Weinert L, Mor-Avi V, Chandra S. J Am Coll Cardiol 2011 November 1;5 8(19):1933-1944.

3D TEE Mitral Valve Imaging

3D TEE Aortic Valve Imaging

Remember Orientation

LA view

Guidance of Paravalvular Repair

- 46 yr male, ESRD on HD for 8 yrs.
- Edwards Pericardial (27mm) MVR.
- Concern for non-compliance with anticoagulation.
- Chronic severe prosthetic MV stenosis with respiratory failure.
- Intubated for 2 weeks with refractory pulmonary edema.

Severe Bioprosthetic Mitral Valve Stenosis

PHILIPS

27mm Edwards Pericardial Valve

Severe Bioprosthetic Mitral Valve Stenosis

PHILIPS

100mm/s

69bpm

Diastolic Area 1.1 cm² **3D Color Doppler** 2014/11/26 01:04:31PM +61.6 A1 = 1.10 cm² METHODIST - FBOR IХ **VR 19H**2 80 180 8cm Full Volume 3D 50% 3D 50dB Mean Diastolic Gradient 18 mmHg CF 75% 10cm 4.4MHZ 2D 65% C 50 P Off Gen 0 81 180 2.5MH -61.6 241 cm/s + Vmax 205 cm/s Vmean -cm/s 23 mmHg Max PG Mean PG 18 mmHg VTI 103 cm --160 73 bpm --240

Trans-septal Mitral V-in-V

Stenotic Bioprosthetic Mitral Valve Trans-septal balloon delivery of new valve

Sapien valve-in-valve

Normal Bioprosthetic Mitral Valve Function

43 yr male; 31 mm SJM MVR; Dyspnea

Case 4:

3DTEE to Evaluate & Trouble Shoot

Take Home Points

- Figure out what it is you are trying to accomplish with 3D echocardiography.
- Good 2D equates to good 3D.
- 3D echocardiography can help better assess valvular pathology.
- Simultaneously assess multiple imaging planes with 3D echocardiography.

Stephen H. Little, MD shlittle@houstonmethodist.org @slittlemd

