

ISSN: 2474-8706 (Print) 2474-8714 (Online) Journal homepage: https://www.tandfonline.com/loi/ushj20

Biomarkers in Aortic Stenosis: A Systematic Review

Björn Redfors, Ariel Furer, Brian R. Lindman, Daniel Burkhoff, Guillaume Marquis-Gravel, Dominic P. Francese, Ori Ben-Yehuda, Philippe Pibarot, Linda D. Gillam, Martin B. Leon & Philippe Généreux

To cite this article: Björn Redfors, Ariel Furer, Brian R. Lindman, Daniel Burkhoff, Guillaume Marquis-Gravel, Dominic P. Francese, Ori Ben-Yehuda, Philippe Pibarot, Linda D. Gillam, Martin B. Leon & Philippe Généreux (2017) Biomarkers in Aortic Stenosis: A Systematic Review, Structural Heart, 1:1-2, 18-30, DOI: <u>10.1080/24748706.2017.1329959</u>

To link to this article: https://doi.org/10.1080/24748706.2017.1329959

View supplementary material 🖸

Accepted author version posted online: 24 May 2017. Published online: 31 May 2017.

C	
L	
	7
L	

Submit your article to this journal 🖸

Article views: 2070

View Crossmark data 🗹

η	Citing articles: 6 View citing articles	
		_

REVIEW ARTICLE

Biomarkers in Aortic Stenosis: A Systematic Review

Björn Redfors, MD, PhD^{a,b}, Ariel Furer, MD ^(b)^a, Brian R. Lindman, MD^c, Daniel Burkhoff, MD^{a,d}, Guillaume Marquis-Gravel, MD^e, Dominic P. Francese, MPH^a, Ori Ben-Yehuda, MD^{a,d}, Philippe Pibarot, DVM, PhD^f, Linda D. Gillam, MD, MPH^g, Martin B. Leon, MD^{a,d}, and Philippe Généreux, MD^{a,e,g}

^aCardiovascular Research Foundation, New York, NY, USA; ^bSahlgrenska University Hospital, Gothenburg, Sweden; ^cVanderbilt University Medical Center, Nashville, TN, USA; ^dNewYork-Presbyterian Hospital/Columbia University Medical Center, New York, NY, USA; ^eHôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada; ^fPulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Québec, Canada; ^gGagnon Cardiovascular Institute, Morristown Medical Center, Morristown, NJ, USA

ABSTRACT

Aortic stenosis (AS) is one of the most common heart valve diseases among adults. When symptoms develop alongside severe AS, there is a poor prognosis unless aortic valve replacement (AVR) is performed; however, many patients do not report symptoms even when AS is severe. The optimal timing of AVR for these patients remains uncertain and controversial. AS is a heterogeneous disease with a complex pathophysiology involving structural and biological changes of the valve as well as adaptive and maladaptive compensatory changes in the myocardium and vasculature in response to chronic pressure overload. Several biomarkers reflecting these processes have been identified and have shown to have utility in predicting symptom onset and clinical events before and after AVR. Herein we systematically review biomarkers that have been studied in the setting of AS and summarize their potential use for risk stratification and ultimately to guide the optimal timing of AVR.

ARTICLE HISTORY Received 4 April 2017; Revised 8 May 2017; Accepted 8 May 2017

KEYWORDS Aortic stenosis; aortic valve; aortic valve replacement; asymptomatic; biomarkers

Introduction

Aortic stenosis (AS) affects approximatively 5% of the general population over the age of 65 years, and once symptoms develop it carries a dismal prognosis unless the valve is replaced.¹⁻¹⁸ Current guidelines, therefore, recommend surgical or transcatheter aortic valve replacement (AVR) for patients with severe symptomatic AS (class I).^{19,20} Despite this fact, the optimal timing of intervention for patients with asymptomatic severe AS is uncertain and controversial.^{5,21-29} Since mortality rates are low for isolated surgical AVR (SAVR) and transcatheter AVR (TAVR), earlier intervention has been increasingly advocated.^{14,15,30-32} For asymptomatic patients, in particular, biomarkers may identify a subgroup of patients who would benefit from earlier valve replacement. Echocardiographic criteria of AS severity, based on anatomical and Doppler indices, have well-known limitations and can incorrectly classify as "moderate" AS patients with a more malignant AS phenotype who are at an increased risk of adverse events or rapid clinical AS progression.^{33,34} Moreover, current criteria do not incorporate signs of maladaptive LV remodeling, such as severe LV hypertrophy or the presence of myocardial fibrosis, into algorithms regarding the timing of AVR in asymptomatic patients. Biomarkers may complement echocardiographic indices of LV remodeling to

identify patients with a more maladaptive response to pressure overload, which may become irreversible if valve replacement is delayed. Several attempts have been made to identify biomarkers of AS severity that could be used to refine AS risk stratification, improve early detection of cardiac decompensation, and lead to timely AVR. The present report will systematically review the current literature on biomarkers in AS. The search strategy is outlined in Supplemental Table 1 (available online).

Pathophysiology in AS

Each biomarker discussed in this review reflects an underlying pathological process within the aortic valve and/or adjacent heart structure (Figure 1; Supplemental Table 2, available online). We therefore provide a brief overview of the pathological processes that occur in AS. For a thorough review of the pathophysiology in AS, the reader is referred to an extensive review by Lindman and colleagues.³⁵

At the level of the valve, endothelial damage allows infiltration of lipids, specifically low-density lipoprotein (LDL) and lipoprotein(a) (Lp(a)) into the fibrosa and triggers the recruitment of inflammatory cells into the aortic valve.^{36–38} Inflammatory cells such as macrophages and lymphocytes that have been recruited to the fibrosa release inflammatory cytokines and matrix

CONTACT Philippe Généreux, MD Spenereux@crf.org Spenereux@crf.org

Supplemental data for this article can be accessed on the publisher's website.

19

Table 1.	. Studies	evaluating	B-type	natriuretic	peptides	in	aortic	stenosis.
----------	-----------	------------	--------	-------------	----------	----	--------	-----------

A	Veer		Restricted to	Deputation	Finalises
Autnors	rear	N 74	severe AS	Population	Findings
Gerber et al. ³⁰	2003	/4	NO	vmax >2.5 m/s No segmental wall motion abnormality	NIPROBAL AND BAR BOTH associate with symptoms (AUC 0.84 and 0.83)
Bergler-Klein et al. ⁴⁹	2004	130	Yes	Vmax >4 m/s and/or AVA <1.0 cm ²	NTproBNP and BNP both predicted the presence of symptoms as well as the risk of symptom onset or death 12-month event rate was 31% (NTproBNP <80 pmol/L) vs. 92% (NTproBNP ≥80 pmol/L)
Lim et al. ⁵¹	2004	70	Yes	AVA <1.0 cm ² Normal LV function	BNP predicts presence of symptoms (AUC 0.86) and independently predicts cardiovascular death
Weber et al.47	2004	146	No	Degenerative AS (any severity)	NTproBNP predicted severity of AS and predicted occurrence of AVR (AUC 0.73)
Gerber et al. ¹⁴¹	2005	29	No	Asymptomatic Vmax ≥2.5 m/s No segmental wall motion abnormality or concomitant valve disease	NTproBNP predicted symptoms (cutoff 50 pmol/L)
Nessmith et al. ⁴⁸	2005	124	No	AVA <1.2 cm^2	BNP predicted presence of symptoms (AUC 0.87) Optimal cutoff was 190 pg/mL
Weber et al. ¹⁴²	2006	102 (57 ^a)	No	Mild, moderate, or severe AS	NT-proBNP independently predicted outcome (death or hospitalization for AS)
Feuchtner et al. ¹⁴³	2006	34	No	Asymptomatic degenerative AS	BNP predicted MACE, defined as symptom onset or mortality
Antonini-Canterin et al. ⁷³	2007	64	No	Isolated aortic stenosis	BNP predicted NYHA class III–IV status (AUC 0.78) and event-free survival (cardiac death, AVR, hospitalization for CHF)
Dichtl et al. ¹¹	2008	50	No	Asymptomatic $\Delta P \ge 15 \text{ mm Hg}$, Vmax $\ge 2 \text{ m/s}$, and aortic valve calcification	NTproBNP predicted MACE (cardiac death, symptoms onset, acute coronary syndrome, or endocarditis)
Van Pelt et al. ¹⁴⁴	2008	34	No	Asymptomatic Moderate or severe AS (Vmax >3 m/s)	BNP predicts abnormal blood pressure response on exercise
Poh et al. ¹⁴⁵	2008	53	No	Variable degrees of AS Sinus rhythm and LVEF >50%	NT-proBNP predicted outcome (cardiac death or symptom-driven AVR)
Monin et al. ¹⁴⁶	2009	107	No	Asymptomatic Moderate to severe AS (Vmax \ge 3.0 m/s OR AVA \le 1.5 cm ²)	BNP independently predict outcome (cardiac death, hospitalization for CHF or AVR)
Lancelotti et al. ⁵²	2010	126	No	Asymptomatic Moderate to severe AS (AVA \leq 1.2 cm ²) LVEF \geq 55%, Sinus rhythm	BNP predicted outcome (cardiac death, symptoms or AVR) AUC 0.89, Best cutoff was 61 pg/mL
Katz et al. ¹⁴⁷	2012	64 (13 ^a)	Yes	Severe AS	BNP and NT-proBNP were both independently associated with mortality over a mean follow-up period of 1520 ± 681 days.
Ben-Dor et al. ⁵⁶	2013	289	Yes	High risk severe AS referred to TAVR	BNP predicted outcome in univariate but not in multivariable analyses (included variables not presented)
Cimadevilla et al. ⁵⁷	2013	361	No	Patients older than 70 years with AS	BNP correlated with severity (AUC = 0.73). BNP predicted symptom free survival in univariate but not multivariable (adjusted for age, AVA, and sex) model
Capoulade et al. ⁵³	2014	211	No	Asymptomatic Moderate to severe AS (Vmax >2.5 m/s AND AVA <1.5 cm ²) Preserved LVEF 157 patients had severe AS	Both baseline BNP and peak BNP during exercise were associated with outcome (death, symptom/LVEF-driven AVR)
Clavel et al.55	2014	1,923	No	Moderate or severe AS	BNP ratio (defined as measured BNP/maximal normal BNP specific to age and sex) independently predicted survival
Farre et al. ⁵⁴	2014	237	No	Asymptomatic Moderate or severe degenerative AS (Vmax >3.5 m/s and/or AVA <1.25 cm ²)	NT-proBNP predicted outcome (hospitalization for angina, syncope, or CHF; AVR; or death)
Henri et al. ¹⁴⁸	2015	69	No	Asymptomatic Moderate or severe AS (AVA <1.5 cm ²) LVEF >50%	Annual change in BNP levels predicted outcome (symptoms, AVR, or death)
O'Neil et al. ⁵⁸	2015	933	Yes	Symptomatic from PARTNER AVA $\leq 0.8 \text{ cm}^2$ AND Vmax $\geq 4 \text{ m/s}$ or $\Delta P \geq 40 \text{ mm Hg}$	Baseline BNP predicted death after TAVR
Abramowitz et al. ⁵⁹	2016	780	Yes	Severe AS Compared low, medium, and high baseline BNP tertiles	Baseline BNP predicted death after TAVR. Median follow-up was 13.1 years. 62 patients died during the first 6 months
Goodman et al. ⁶¹	2016	530	No	Moderate or severe AS (AVA <1.3 cm ²) and normal LVEF	Baseline BNP predicted death in multivariable models and added value over left ventricular strain 161 patients died (30%) during a mean follow-up of 4.7 \pm 2 years. 76% underwent TAVR during the study duration
Koskinas et al. ⁶⁰	2016	340	Yes	Severe AS who underwent TAVR	Baseline BNP predicted death after TAVR

Note. ^aNumber of conservatively managed patients.

ΔP, pressure difference across the aortic valve; AS, aortic stenosis; AUC, area under the curve; AVA, aortic valve area; BP, blood pressure; CHF, congestive heart failure; LV, left ventricle; LVEF, left ventricular ejection fraction; MACE, major adverse cardiac event; RWT, relative wall thickness; Vmax, maximum Doppler velocity signal across the aortic valve.

Figure 1. Pathophysiological processes involved in aortic stenosis and associated with biomarkers.

metalloproteinases, leading to degradation of cusp collagen and proteoglycans.^{39–42} These biological events lead to osteoblastic transition of valve interstitial cells and active cusp calcification.-^{37,38} As a result, with time the calcified valve becomes increasingly rigid and stenotic.

The stenotic aortic valve increases the resistance that the left ventricle (LV) must overcome during systole, i.e. the LV afterload. The LV initially responds through myocardial remodeling, which allows for the restoration of wall tension, an important determinant of cardiomyocyte oxygen consumption, by undergoing concentric hypertrophy (wall thickening) in accordance with LaPlace's law

$$\sigma = \left[P \ x \ r\right]/2h$$

where σ is LV wall tension, *P* is LV pressure, *r* is LV radius, and *h* is myocardial wall thickness. LV hypertrophy compensates for increased luminal pressure and normalizes myocardial wall tension but becomes maladaptive with time, so-called adverse cardiac remodeling.⁴³ The precise mechanisms behind the transition from adaptive to maladaptive hypertrophy are poorly defined but involve cardiomyocyte death and myocardial fibrosis.⁴⁴

B-type natriuretic peptides

B-type natriuretic peptide (BNP) and its prohormone N-terminal pro B-type natriuretic peptide (NT-proBNP) are released in response to ventricular and/or atrial cardiomyocyte stretch.⁴⁵ The exact mechanisms behind the release of these biomarkers and how they relate to LV remodeling are incompletely understood; however, BNP levels have considerable prognostic value in patients with heart failure (HF).^{45,46} Reports of NT-proBNP or BNP in AS are summarized in Table 1.

NT-proBNP levels correlate with AS severity, aortic valve area, peak velocity, peak transvalvular gradient, and echocardiographic markers of higher risk of adverse outcomes in AS.^{45,47} In asymptomatic severe AS, baseline BNP levels are predictive of an abnormal blood pressure

response to exercise, earlier symptom onset, and increased risk of re-hospitalization due to HF, need for AVR, and mortality.48-52 Of note, most of these studies excluded patients with depressed LV function and/or concomitant valve disease which might otherwise cause elevated natriuretic peptide levels.53,54 Hence, the results and conclusions of these studies apply to AS patients with otherwise normal cardiac structure and function. On the basis of these associations the European Society Cardiology/ European Association for Cardio-Thoracic Surgery guidelines but not the AHA/ACC guidelines note that AVR may be considered in patients with asymptomatic severe AS and markedly elevated levels of natriuretic peptides in the absence of an alternative explanation (class IIb).^{19,20} Although merely a class IIb recommendation, BNP is the only biomarker that is acknowledged by current guidelines to have an established prognostic value. A recent study showed that BNP activation, defined as the ratio between the measured BNP and the maximum expected BNP for a subject's age and sex, was a strong and persistent predictor of mortality.55

The predictive value of BNP may be lower in the elderly, the patient group most commonly affected by AS. Two studies that enrolled predominantly older patients (mean age 79.6 \pm 6 years and 82.5 \pm 8.4 years) have questioned the association between BNP and adverse outcomes in AS.^{56,57} In these studies BNP levels were associated with AS severity and outcomes in a univariate analysis but not after multivariable adjustment.

Importantly, recent reports have shown that baseline BNP is predictive of worse outcomes among patients who undergo TAVR.^{58–61} These observations are consistent across most reports and remain significant after multivariable adjustment. This implies that markedly elevated BNP levels may reflect irreversible damage to the myocardium. If this is the case, then deferring AVR in patients with asymptomatic AS until BNP levels rise markedly may not be optimal. Instead, more sensitive markers that allow for earlier intervention may be preferable.

Markers of myocardial injury

Cardiac troponins

Troponin I and Troponin T are cardio-specific components of the cardiomyocytes' contractile apparatus. Elevated cardiac troponins in serum have been thought to reflect cardiomyocyte necrosis with degradation of the contractile filaments; however, cardiac troponins also exist in cytosolic pools and can be released in smaller amounts when the integrity of the cell membrane is compromised in response to sub-lethal damage.⁶² Studies evaluating cardiac troponins in AS are summarized in Table 2. Plasma troponin I concentrations have been shown to be associated with increased LV mass and fibrosis, as assessed by magnetic resonance imaging.⁶³ Although the data are less robust compared to BNP, particularly among patients with asymptomatic severe AS, baseline troponin levels are predictive of worse outcomes in patients with severe AS. This appears to hold true regardless of whether the patients are treated conservatively or undergo TAVR or SAVR.⁶⁴⁻⁶⁶ As was the case with BNP, the independent association between baseline troponin levels and worse prognosis after AVR implies that elevated troponins in AS are reflective of irreversible remodeling processes and that intervention before the onset of adverse remodeling, or early in its course, may improve prognosis after AVR.

Heart-type cytosolic fatty acid binding proteins (H-FABP)

H-FABP is another fatty acid transporter that is proven to be closely related to myocardial injury in patients with acute coronary syndromes⁶⁷ and/or HF.⁶⁸ H-FABP levels correlated

Table 2. Studies evaluating markers of cardiac injury in aortic stenosis.

with relative wall thickness in a cohort of patients with mild to moderate AS and were an independent predictor of cardiac events after adjustment for indices of LV function.⁶⁹

Biomarkers related to tissue inflammation

Several biomarkers related to local and/or systemic inflammatory processes have been studied in the setting of AS (Table 3).

Cancer antigen 125 (CA-125)

CA-125 is released from mesothelial cells in response to either pro-inflammatory cytokines or serosal effusions and is associated with disease progression and clinical outcomes in patients with HF.^{70,71} CA-125 levels are associated with the presence of symptoms and increased risk of adverse events and appears to have incremental value over BNP, the logistic EuroSCORE, and New York Heart Association Class.^{72,73} CA-125 also correlates with echocardiographic measures of LV and atrial size and function, and appears not to be influenced by renal function, age, or body mass index.

Growth differentiation factor 15 (GDF-15)

GDF-15 is a stress-responsive cytokine belonging to the transforming growth factor family that participates in inflammation and apoptotic pathways.^{74,75} Higher levels are associated with worse outcomes in HF patients.⁷⁶ GDF-15 has been shown to be superior to NT-proBNP for predicting risk in patients undergoing TAVR and added incremental value over

^	uthors	Voor	N	Restricted to	Population	Findings				
-	audios Trononin	Tear		Severe AS	ropulation	i inuligs				
C	araiac Troponin									
	Rosjo et al. ¹⁴⁹	2011	57	No	Patients with AS and LV hypertrophy. 30 patients had SAVR.	Baseline troponin levels predicted degree of LV hypertrophy and predicted mortality.				
	Solberg et al. ¹⁵⁰	2012	136	No	Patients with AS (mean valve area 0.62 cm ²) who were either treated conservatively or underwent SAVR.	Baseline troponin predicted mortality. A combination of troponin and NT-proBNP improved prediction.				
	Saito et al. ¹⁵¹	el. ¹⁵¹ 2013 60 Yes			Patients who underwent SAVR due to severe AS. Most were symptomatic	Baseline troponin predicted death in univariate analysis. Multivariable analysis was not performed.				
	Frank et al. ¹⁵²	2013	107	No	Patients with AS who underwent TAVR.	Baseline troponin independently predicted survival in patients undergoing TAVR.				
	Chorianopoulos 2013 198 Yes et al. ⁶⁶			Yes	Patients with symptomatic severe AS who underwent TAVR.	Baseline troponin predicted mortality.				
	Chin et al. ⁶³	2013	122 + 131	No	Patients with AS (mean AVA 1.0 \pm 0.4 cm ²) Two separate cohorts: "Mechanism Cohort" ($n = 122$) and "Outcomes Cohort" ($n = 131$)	Higher plasma TNI concentrations were associated with increased hypertrophy and replacement fibrosis. Higher plasma TNI concentrations were associated with higher adjusted risk of AVR or death.				
	Lindman et al. ⁶⁴	2015	345	Yes	Patients with severe AS (AVA <1.0 cm ²) who were referred for and treated with AVR (TAVR [$n = 183$] or SAVR [$n = 162$])	Baseline troponin predicted death in univariate but not multivariable analyses.				
	Kohler et al. ⁶⁵	2016	267	No	Patients with AS undergoing TAVR Mean age 82 \pm 6 years	Baseline troponin predicted death in univariate and multivariable analysis (multivariable model not presented).				
H	leart-type Cytosolic Fa	tty Acid	Binding Protein	ıs						
	lida et al. ⁶⁹	2007	285 (73 with AS)	No	Patients with mild to moderate AS (mean valve gradient 25 ± 11.7) or mild-moderate AR or hypertensive cardiomyopathy.	H-FABP was independently correlated with RWT in AS (p < 0.05), and an independent predictor of cardiac events including worsening of heart failure, angina pectoris and cardiac death in AS (RR = 13.6, 95% CI = 3.27–66.9).				

Note. ΔP, pressure difference across the aortic valve; AS, aortic stenosis; AUC, area under the curve; AVA, aortic valve area; BP, blood pressure; CHF, congestive heart failure; H-FABP, heart-type cytosolic fatty acid binding protein; LV, left ventricle; LVEF, left ventricular ejection fraction; MACE, major adverse cardiac event; Vmax, maximum Doppler velocity signal across the aortic valve.

Findings		Levels of CA-125 were significantly higher in more symptomatic (NYHA III-IV) vs. less symptomatic patients. CA-125 and BNP were both significantly correlated with several echocardiographic indices of left ventricular size and function. Both CA-125 and BNP levels were predictors of outcome (cardiac death, urgent AVR, or hospitalization for congestive heart failure). 52% of patients with CA-125 \geq 10.3 U/mL vs. 13% with CA-125 <10.3 U/mL vs. 7% with BNP <254 pg/mL vs. 7% with BNP <254 pg/mL ($p < 0.001$) reached the end point.	A 3-fold increase in the rates for death and MACE was observed in patients with plasma CA-125 above vs. below the median (17 U/mL; 5.2 vs. 1.6 per 10 person-years and 8.3 vs. 3.3 per 10 person-years, respectively; $p < 0.001$ for both). In the multivariable analysis, baseline CA-125 remained independently associated with an increased risk of all-cause death (HR 2.18; 95% CI 1.11–4.26; $p = 0.023$) and MACE (HR 1.77; 95% CI 1.05–2.98; $p = 0.031$).	On multivariable survival analyses, baseline RDW $\ge 15.5\%$ independently predicted death (adjusted HR 2.70, 95% Cl 1.40–5.22, $p = 0.003$). A greater rate of increase in RDW over time was independently associated with increased mortality (adjusted HR 1.11; 95% Cl 1.04–1.18, $p = 0.001$) with an increase in RDW >0.1%/month being associated with a 2-fold increased risk of mortality.	Among the measured biomarkers GDF-15 was the strongest predictor for 1-year mortality (AUC 0.686) and added to incremental value to the logistic EuroSCORE and EuroSCORE II score, as assessed by reclassification indices.	GDF-15 levels in the upper fourth quartile showed a significant association with reduced survival time after TAVR ($p < 0.001$). Patients with GDF-15 levels in the upper quartile had increased mortality risk compared to patients with GDF-15 levels in the lower three tertiles (HR 2.40; 95% CI 1.47–3.93, $p < 0.001$). NT-proBNP did not remain significantly associated with mortality when adjusted for GDF-15.	GDF-15 was found to be predictive of mortality in unadjusted (HR 1.89; 95% Cl 1.54–2.31) and adjusted for clinical factors (HR 1.61; 95% Cl 1.28–2.03) and STS score (HR 1.71; 95% Cl 1.36–2.13).	GDF-11 was independently associated with frailty (adjusted $p = 0.003$). Associations between GDF-11 and rehospitalization ($p = 0.044$) or multiple adverse post-operative events ($p = 0.041$) also remained statistically significant after adjusting for potential confounding demographic and comorbidity variables.		MDA was the strongest predictor of the combined VARC endpoint ^a at 1 year (AUC = 0.872 for the TAVR group). Increased levels of MDA, MMP2, TIMP1, and 8-hydroxy-2-deoxyguanosine were all predictors of the occurrence of the VARC combined safety endpoint ^a at 30 days. The addition of MDA to the EuroSCORE model significantly improved the prediction of VARC combined safety endpoint ^a at 30 days. The addition of MDA to the Combined endpoint (0–365 days) ($p < 0.05$).		Galectin-3 was independently associated with increased risk for reaching the 30-day VARC safety endpoint ^a in a Cox proportional hazards model (HR 3.36; 95% CI 1.47–7.69; $p = 0.004$), of death (HR 4.48; 95% CI 1.56–12.91; $p = 0.005$). Galectin-3 was also an independent predictor of cardiovascular events (defined as any cardiovascular death, non-fatal myocardial infarction, stroke, or transient ischemic attack; HR 5.12; 95% CI 2.10–12.47; $p < 0.001$). Combination of galectin-3 with NT-proBNP resulted in incremental prognostic information.	TIMP1/MMP2 and TIMP1/MMP9 ratios differed considerably between SAVR patients and healthy controls. MMP2, MMP9, and MDA levels were higher in SAVR patients compared to the control group ($p = 0.03$, $p < 0.0001$, and $p < 0.0001$ respectively). The extent of valve calcification as evaluated by alizarin red was positively correlated with TIMP1 ($r = 0.304$, $p = 0.011$), MCP-1 ($r = 0.296$, $p = 0.02$), and negatively correlated with MMP-9 ($r = -0.325$, $p = 0.01$).	sST2 (>23 ng/mL, AUC = 0.68, $p < 0.01$) was more accurate than BNP in identifying patients who would develop symptoms during follow-up. sST2 level was an independent predictor of cardiovascular events, defined as death, dyspnea, acute pulmonary edema.	5ST2 was found to be predictive of mortality in unadjusted (HR 1.55; 95% Cl 1.26;1.91) and adjusted for clinical factors (HR 1.45; 95% Cl 1.16–1.81) and STS score (HR 1.37; 95% Cl 1.10–1.70).
Biomarker(s)		CA-125	CA-125	RDW	GDF-15	GDF-15	GDF-15	GDF-11		MDA		Galectin-3	TIMP1, MMP2, MMP9	sST2	sST2
Population		Any AS severity (mean AVA 0.92)	TAVR patients (93% AS, 6% degenerated bioprosthesis, 2% severe AI)	Patients undergoing TAVR	Patients undergoing TAVR	Patients undergoing TAVR (mean AVA 0.7 cm ²)	Patients undergoing TAVR or AVR	Patients undergoing TAVR or SAVR		SAVR and TAVR (mean AVA 0.6 cm ²)		Patients undergoing TAVR (mean AVA 0.73 cm ²)	Patients undergoing SAVR (AVA 0.5–0.9 cm ²)	Moderate or severe AS with preserved LVEF (>50%)	Patients undergoing TAVR or AVR
Restricted to severe AS		<i>N</i>	No	I	Yes	Yes	Yes	Yes		Yes		Yes	Yes	No	Yes
Z	imation	64	228	175	310	217	348	73		42	eling	101	60	86	348
Year	sue Inflan	2007	2013	2013	2015	2015	2015	2016	SS	2012	ar Remod	2014	2015	2015	2015
Authors	Biomarkers Related to Tis.	Antonini et al. ⁷³	Husser et al. ⁷²	Aung et al. ⁷⁹	Sinning et al. ⁷⁴	Krau et al. ⁷⁵	Lindman et al. ⁶⁴	Schafer et al. ⁷⁸	Markers of Oxidative Stre	Parenica et al. ³⁹	Markers-Related Ventricul	Baldenhofer et al. ¹⁰⁹	Kapelouzou et al. ⁴²	Lancelotti et al. ¹⁰⁵	Lindman et al. ⁶⁴

Table 3. Studies evaluating other biomarkers in aortic stenosis.

(Continued).	Population Biomarker(s) Findings	3	iid or moderate AS OxPL-apoB AS progression was faster in the tertile of patients who had the highest plasma levels of lipoprotein a (peak aortic jet velocity: +0.26 \pm 0.26 vs. +0.17 \pm 0.21 m/s/ <i>y</i> ; <i>p</i> = 0.005) and OxPL-apoB (+0.26 \pm 0.26 m/s/ <i>y</i> vs. +0.17 \pm 0.21 m/s/ <i>y</i> ; <i>p</i> = 0.015. Compared to patients in the lower two tertiles patients in the top tertile of lipoprotein a or OxPL-apoB had increased risk of AVR and cardiac death.	cymptomatic AS, AVALp-PLA2Patients with increased Lp-PLA2 activity had a nonsignificant trend for faster AS progression rate than patients24 cm²who did not have increased Lp-PLA2 activity (annualized Vpeak 0.17 \pm 0.23 m/s/y vs. 0.12 \pm 0.18 m/s/y, $p = 0.14$).24 cm²who did not have increased Lp-PLA2 activity (annualized Vpeak 0.17 \pm 0.23 m/s/y vs. 0.12 \pm 0.18 m/s/y, $p = 0.14$).24 cm²There was a significant interaction between Lp-PLA2 activity and baseline AS severity on AS progression rate (i.e.123) stenosis progression rate was 2-fold faster in the subset of patients with mild AS (defined as Vpeak <3.0 m/s, $n = 123$) stenosis progression rate was 2-fold faster in the subset of patients with increased Lp-PLA2 activity23) stenosis progression of Vpeak 0.16 \pm 0.18 m/s/y vs. 0.09 \pm 0.14 m/s/y, $p = 0.01$). On multivariable analysis Lp-PLA2 activity was independently associated with a faster annualized progression rate of Vpeak ($p = 0.02$), or AVAi ($p = 0.02$) in the subset of patients with mild AS.		tients undergoing SAVR FAT/CD36 With increasing cardiac hypertrophy there was a shift from FAT/CD36 and electron transport chain complex I GLUT4 protein expression toward GLUT4 protein expression in the ventricle.		were AS (AVA 0.7 cm ²) miR-210 The prognostic accuracy of miR-210 for all-cause mortality was comparable to the accuracy of NT-proBNP levels: AUC = 0.64 (95% Cl 0.50–0.76) vs. AUC = 0.67 (0.53–0.79), respectively, $p = 0.83$.		vere ($n = 42$) and moderate vWF Mean ΔP correlated inversely with plasma vWF multimers ($r = -0.56$, $p < 0.001$), and plasma vWF levels improved after AVR. Bleeding episodes within the preceding 6 months were common among the study cohort (9 out of 20), with most cases being mucosal bleeding.	were ($n = 30$), moderate ($n = vWF$ Reduced levels of vWF multimers were associated with mean ΔP and an increased risk of the composite of death 0), or mild ($n = 16$) AS ($n = 4$) or AVR ($n = 22$).	 were AS undergoing TAVR vWF Abnormal vWF multimers, defined as a densitometric high-molecular-weight multimer (HMWM) content of <20.4%, were common (42%) but improved after TAVR. Paravalvular leak after TAVR was associated with less pronounced improvement in HMWM. Pre-procedure mean ΔP correlated inversely with pre-procedure HMWM. 	were AS undergoing TAVR (n vWF Plasma vWF was reduced in the patient cohort at baseline but increased considerably after TAVR but not BAV. 20) or BAV ($n = 10$)	vere AS undergoing TAVR vWF Plasma levels of vWF was reduced in patients with AS and normalized post TAVR only in patients without (n = 137) aortic regurgitation post-implantation. Plasma levels of vWF post-TAVR were independently associated with increased mortality at 1 year.		/A <1.0 cm ² GDF-15, The number of elevated biomarkers (GDF-15, sST2, and NT-proBNP) was associated with higher mortality post sST2, NT- TAVR/SAVR (adjusted HR 2.95 and 4.3 for 2 and 3 elevated biomarkers, respectively). proBNP	f all-cause mortality, major stroke, life-threatening for disabling] bleeding, acute kidney injury requiring renal replacement therapy, peri-procedural myocardial on for valve-related dysfunction [either surgical or interventional]. cy: AS, aortic stenosis; AUC, area under the curve; AVA, aortic valve area; AVAi, aortic valve area; AVR, aortic valve replacement; BAV, balloon aortic valvuloplasty; 6, cluster of differentiation 36; FAT, fatty acid translocase; GDF, Growth Differentiation Factor; GLUT4, glucose transporter type 4; HR, hazard ratio; Lp-PLA2, lipoprotein- on; MACE, major adverse cardiae event; MDA, malonaldehyde; MMP, matrix metalloproteinase; NT-proBNP, N-terminal prohormone of B-type natriuretic peptide; NYHA, so maplicipoprotein B; ROC, receiver operating characteristic; RDW, red cell distribution width; SAVR, surgical aortic valve: relacement; sST2, soluble ST2; TAVR, matrix metallonvoration B; ROC, receiver operating characteristic; RDW, red cell distribution width; SAVR, surgical aortic valve: relacement; sST2, soluble ST2; TAVR, matrix metallonvoration B; ROC, receiver operating characteristic; RDW, red cell distribution width; SAVR, surgical aortic valve: relacement; sST2, soluble ST2; TAVR, matrix metallonvoration B; ROC, receiver operating characteristic; RDW, red cell distribution width; SAVR, surgical aortic valve: relacement; sST2, soluble ST2; TAVR, matrix metallonvoration B; ROC, receiver operating characteristic; RDW, red cell distribution width; SAVR, surgical aortic valve: replacement; sST2, soluble ST2; TAVR, matrix metallonvoration accurate and receiver metallonvoration; veak maximum Donohe velor; soluble ST2; replacement; sST2, soluble ST2; replacement; replacement; replacement; reprocement; repl
osis. (Continued).	Population	ocess	Mild or moderate AS	Asymptomatic AS, AVA 1.24 cm ²		Patients undergoing SAVR		Severe AS (AVA 0.7 cm ²)		Severe $(n = 42)$ and model AS $(n = 8)$	Severe $(n = 30)$, moderate (20), or mild $(n = 16)$ AS	Severe AS undergoing TAV	Severe AS undergoing TAV = 20) or BAV $(n = 10)$	Severe AS undergoing TAV		AVA <1.0 cm ²	te of all-cause mortality, maj ention for valve-related dysfi ciency; AS, aortic stenosis; AU CD36, cluster of differentiatio action; MACE, major adverse c ations; MACE, major adverse c sifiods on apolipoprotein B; R si of matrix metallonorteinase
ers in aortic sten	Restricted to severe AS	d Calcification P	No	2	ш	No		Yes		N	No	Yes	Yes	Yes		Yes	as the composi on, and re-interv c; Al, aortic insuff trer antigen 125; tricular ejection fi xirdized phosphr P. tissue inhibipc
biomarke	Z	zation an	220	183	Metabolis	18	s in AS	57 AS, 10 control		50	66	95	30	183		345	s defined omplicatic ortic valve A 125, car F, left vent 'L-apoB, c
ng other	Year	Minerali	2015	2015	Cardiac I	2011	3iomarker.	2014		2003	2013	2015	2015	2016		2015	ndpoint i: ascular co ross the ac eptide; C/ e A2; LVEF e A2; LVEF
Table 3. Studies evaluati	Authors	Markers Related to Valve	Capoulade et al. ¹¹⁴	Capoulade et al. ¹¹⁵	Markers of Alterations in	Heather et al. ¹¹⁷	MicroRNAs as Potential Ł	Rosjo et al. ¹²⁴	Other Biomarkers	Vincentelli et al. ¹²⁸	Blackshear et al. ¹⁵³	Spangenberg et al. ¹²⁵	van Belle et al. ¹⁵⁴	van Belle et al. ¹³¹	Multi-Marker Approach	Lindman et al ⁶⁴	Note. ^a VARC combined el infarction, any major ve DP, prescure difference act BNP, B-type natriuretic p associated phospholipas New York Heart Associa transcatheter aortic valvv

B. REDFORS ET AL.: BIOMARKERS IN AORTIC STENOSIS

the logistic EuroSCORE.^{64,75} GDF-15 is associated with extracardiac disease, making it less AS-specific but potentially useful for overall risk stratification.⁷⁴

Growth differentiation factor 11 (GDF-11)

GDF-11 is another newly discovered member of the transforming growth factor family that may be useful for predicting risk in AS. GDF-11 is believed to be involved in "aging processes" and to be reflective of frailty.^{77,78} GDF-11 levels are predictive of post-operative complications and re-hospitalizations after AVR.⁷⁸

Red blood cell distribution width (RDW)

RDW is increased among patients with inflammatory conditions, renal dysfunction, atherosclerosis, and states of ineffective erythropoiesis.^{79–81} RDW expansion is associated with progression of HF and worse prognosis.^{82–84} RDW at baseline is associated with increased mortality after TAVR, and expanding RDW during patient follow-up predicts mortality independent of baseline RDW.⁷⁹

Markers of oxidative stress

Oxidative stress is closely related to inflammation and is an important component in the pathophysiology of various cardiovascular diseases, including AS.^{85,86} Oxidative stress, through the production of lipid peroxides and free radicals, damages cell components including proteins, lipids, and DNA.^{85,86}

Malondialdehyde (MDA)

MDA is a highly reactive product of lipid peroxidation and among the most studied markers of oxidative stress.⁸⁷ MDA levels appear to be increased in patients with AS and were shown to be predictive of worse outcomes, including increased risk of dying after TAVR.^{39,42} In these studies, MDA levels provided incremental value over the EuroSCORE for risk prediction.

8-hydroxy-2-deoxyguanosine (8-OHdG)

Another marker of oxidative stress that may be useful for risk prediction in AS is 8-OHdG, a product of DNA oxidation. Higher levels of 8-OHdG were associated with higher rates of achieving the Valve Academic Research Consortium combined safety endpoint at 30 days (which includes all-cause mortality, major stroke, life-threatening [or disabling] bleeding, acute kidney injury requiring renal replacement therapy, peri-procedural myocardial infarction, any major vascular complication, and re-intervention for valve-related dysfunction [either surgical or interventional])⁸⁸ in both TAVR and SAVR patients.³⁹

Markers of ventricular remodeling

Markers of extracellular matrix metabolism

The maladaptive response of the LV in AS involves remodeling of the extracellular matrix with deposition of interstitial collagen, leading to myocardial fibrosis and increased myocardial wall stiffness.⁴⁰ Interstitial fibrosis can be detected in patients with AS before any signs of impaired cardiac function can be detected by echocardiography. Several biomarkers have been identified that reflect extracellular matrix remodeling. These include transforming growth factor $\beta 1$,^{40,42,89} collagen-derived peptides,⁹⁰ matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMP).³⁹⁻⁴² Both TIMP1 and MMP2 appear to have incremental value over established clinical risk models for prediction of the Valve Academic Research Consortium combined safety endpoint at 30 days after TAVR, while MMP2 also improved the prediction of a combined endpoint (defined as the occurrence of any clinical [safety or efficacy] endpoint, wherein efficacy includes allcause mortality after 30 days, hospitalization for symptoms of valve-related or cardiac decompensation, and prosthetic heart valve dysfunction) throughout 1 year of follow-up.³⁹ Important limitations of these biomarkers include uncertainties in regard to their specificity for cardiac disease⁹¹⁻⁹⁴ and their route of clearance. There also appears to be considerable variability between the different assays in the results reported.95,96

ST2

ST2 is a member of the interleukin (IL)-1 receptor family with membrane-bound (ST2L) and soluble (sST2) forms. The soluble form of ST2 is thought to function as a decoy receptor, antagonizing the anti-hypertrophic and anti-fibrotic effects of IL-33.97-99 Both cardiac fibroblasts and cardiomyocytes express IL-33 and sST2, and expression levels are increased in response to myocardial stress. sST2 concentrations have been shown to be increased after myocardial infarction as well as in acute HF and correlate with infarct size, degree of cardiac dysfunction, and hemodynamic and neurohormonal derangement.¹⁰⁰⁻¹⁰² In patients with AS, sST2 levels have been shown to correlate with echocardiographic indices of diastolic function and have been shown to predict symptom onset in asymptomatic patients with severe AS.¹⁰³⁻¹⁰⁵ sST2 has also been shown to be a strong predictor of mortality after valve replacement.⁶⁴

Galectin 3 (Gal-3)

Gal-3 is a member of the ß-galactoside binding protein family. It is expressed in a variety of cells, including leukocytes and fibroblasts, and participates in myocardial inflammation and fibrosis.^{106–108} Gal-3 has been shown to be an independent predictor of mortality and added incremental value to NT-proBNP in one study¹⁰⁹ but was not an independent predictor of mortality in another.⁶⁴ An important limitation of Gal-3 is that it is not specific to cardiac conditions and is elevated in patients with reduced renal function.¹¹⁰

Markers related to valve mineralization and calcification process

Valve mineralization plays a central role in AS progression. It involves the accumulation of oxidized low-density lipoprotein cholesterol in the intima of the valve cusps.^{111–113}

Lipoprotein-associated phospholipase A2 (Lp-PLA2)

Lp-PLA2 uses oxidized low-density lipoprotein cholesterol as substrate and produces free fatty acids and lysophosphatidylcholine, a powerful pro-inflammatory and pro-calcifying factor.¹¹⁴ In a substudy of the PROGRESSA study Lp-PLA2 activity was found to correlate well with accelerated AS progression among patients with mild AS.¹¹⁵

Lipoprotein a (Lp[a])

Another example of the pathogenic role of oxidized lipoproteins was reported by Capoulade and coauthors,¹¹⁵ who showed that oxidized phospholipids per apolipoprotein B-100 (OxPL-apoB) and its major plasma carrier Lp(a) correlated with disease progression and outcomes in a cohort of patients with mild-to-moderate AS. They found an independent correlation between the rate of AS progression and OxPL-apoB and Lp(a) levels. Patients with Lp(a) or OxPL-apoB levels in the highest tertile had increased risk of AVR and cardiac death after adjustment for other known risk factors.

Markers of alteration in cardiac metabolism

Under resting conditions, the normal heart derives approximately 70% of its energy from fatty acid oxidation. In the hypertrophied heart a greater proportion of the energy is derived from glucose.^{116,117} Analyses of tissue from patients undergoing SAVR have shown that the abundance of the glucose transporter GLUT4 relative to the fatty acid transporter FAT/CD36 correlated with severity of LV hypertrophy.¹¹⁷

Micro RNA (miRNA) as a potential biomarker in AS

miRNA is small RNA that regulates gene expression by targeting mRNA for cleavage or translational repression.^{118,119} These 19–25 nucleotide long non-coding RNA could function as "on/off switches" for various cellular functions and processes.¹²⁰ Circulating miRNA may be involved in critical biological processes underlying cardiovascular disorders and are currently being investigated as biomarkers in cardiovascular disease.¹²¹ Examples of potential miRNA biomarkers in AS include miR-133a, which was shown to predict the extent of regression of LV hypertrophy after SAVR¹²²; miR-21, which was shown to be associated with LV fibrosis¹²³; and miR-210, which was independently associated with mortality in patients with moderate-to-severe AS.¹²⁴ miRNA research is expected to expand considerably in the coming years, and new candidate biomarkers will likely be identified.¹²¹

Other biomarkers

Biomarkers previously described mostly involved pathophysiological mechanisms directly or indirectly involved in the genesis of AS or underlying consequential cardiac cell injury. In addition, some biomarkers may reflect systemic consequences of AS. Acquired von Willebrand factor (vWF) deficiency, due to the molecular breakdown of the high molecular weight protein vWF in presence of AS, is one of the most clinically important examples.

vWF

vWF is a large multimeric glycoprotein present in blood plasma that plays a major role in secondary hemostasis. Under high shear stress conditions, such as high flow velocity due to AS, the conformational structure of vWF may change during aortic valve passage, triggering its cleavage (catabolic enzyme ADAMTS 13) and inactivation.^{125–127} Proportional to the AS severity, plasma levels and function of vWF are reduced, which may result in clinically significant bleeding. The combination of gastrointestinal bleeding (intestinal angiodysplasia) and AS is a well-described entity (Heyde's syndrome).¹²⁸ Acquired vWF deficiency is also observed post-AVR in cases of significant paravalvular leak or prosthesis mismatch.¹²⁹⁻¹³¹ A recent study of 137 patients with AS showed that vWF normalized after TAVR in patients without significant paravalvular leak but did not normalize or partially normalize when post-implantation paravalvular leak was present.¹³¹ This study further showed that reduced level of vWF was independently associated with increased mortality at 1 year. While these data suggest that vWF could be useful post-AVR to biologically detect the presence of high shear stress phenomena such as paravalvular leak, prosthesispatient mismatch, or progressive re-narrowing of aortic prosthesis, whether vWF could be used as a surrogate marker of AS severity in order to help decide the appropriate timing of AVR remains to be demonstrated.

Incorporating biomarkers in clinical practice—a multi-modal and multi-marker approach

Since AS is a heterogeneous disease with a complex pathophysiology involving the aortic valve per se and interconnected cardiac structures, it is likely that the most effective risk stratification strategy is one that integrates the diversity of biological pathways involved in AS. Echocardiography paired with a careful clinical assessment of symptoms and functional limitation could be sufficient to appropriately risk stratify patients presenting with AS.^{19,20} That being said, many patients with "echodefined" cardiographically moderate AS or severe asymptomatic AS have an unfavorable prognosis when treated conservatively.^{61,132,133} Pharmacologic testing (in low-flow/lowgradient AS) or exercise stress-testing (in severe asymptomatic AS) can effectively identify patients who are more likely to benefit from a strategy of early AVR compared to a watchful waiting strategy;¹³⁴ however, practically speaking, these two modalities require specific expertise, might not be suitable in a high proportion of patients (incapacity to perform stress test,

presence of baseline arrhythmia), and don't have perfect predictability.¹³⁴ Some clinicians might also be uncomfortable performing such tests among AS patients, which could explain the very low rate of adoption in daily practice.^{61,132,133,135-140} While acknowledging their utility in risk stratification of patients with AS,^{19,20} these limitations underscore the incremental value of more readily available screening tools such as blood biomarkers. Lindman and coworkers⁶⁴ recently reported that the risk of dying after TAVR increased with the number of elevated biomarkers and was 10-fold higher for patients with elevated GDF-15, sST2, and NT-proBNP compared to patients with no elevated biomarkers. Thus, a multi-pronged approach, including clinical, imaging, functional testing, and biochemical markers would be most likely to optimize risk-stratification of AS patients. Further research is needed to confirm the value and role in risk stratification of current and novel serum biomarkers in patients with AS. Prospective studies of biomarkerdriven therapies in specific subsets of AS patients could provide a definite answer.

Potential opportunities for biomarkers to change clinical management—looking to the future

While all patients may not benefit from valve replacement before symptoms develop, asymptomatic patients with elevation of certain biomarkers or a certain number of biomarkers indicative of maladaptive remodeling may benefit from earlier replacement to optimize long-term valve cardiac performance.^{64,108} Apart from a class IIb indication for AVR in patients with asymptomatic severe AS and markedly elevated BNP in the European guidelines, none of the reviewed biomarkers currently have an established role in risk-stratification or in guiding timing or type of AVR; however, upcoming randomized multicenter trials that will randomize patients to early valve replacement versus watchful waiting include pre-specified biomarker substudies that will shed further light on the role of biomarkers in risk stratification of patients with AS (NCT03042104).

Biomarkers have the potential to aid in the identification of patients at high risk for specific complications from valve replacement, including acute kidney injury, stroke, and valve thrombosis. Identification of high-risk subgroups would allow for testing of preventive measures specifically for patients who would be expected to benefit the most from these techniques.⁶⁴

Biomarkers could help identify patients likely to have suboptimal outcomes with valve replacement alone, e.g. high early mortality, poor quality of life, and persistent heart failure. Adjunctive medical therapies could then be employed to optimize patient-oriented outcomes for these sub-populations.

Conclusions

Several biomarkers that reflect different pathological processes have been shown to have an incremental value over classic echocardiographic criteria and clinical assessment for riskstratification of patients with AS. BNP is currently the only biomarker that is supported by guideline recommendations. While encouraging data seem to support a multi-marker approach for risk stratification of patients with AS, further validation is needed before it can be integrated in a future risk stratification algorithm for patients with AS.

ORCID

Ariel Furer 🝺 http://orcid.org/0000-0002-2458-9548

Disclosure Statements

Dr Lindman has received a research grant from Edwards Lifesciences. Dr Pibarot has received a research grant from Edwards Lifesciences. Dr Gillam has acted as a consultant for Edwards Lifesciences and has core lab contracts with Edwards Lifesciences and Medtronic. Dr Leon is on the PARTNER Trial Executive Committee for Edwards Lifesciences (non-paid). Dr Genereux has received a speaker fee and is a consultant for Edwards Lifesciences. The rest of the authors have no relevant relationships to disclose.

References

- Go AS, Mozaffarian D, Roger VL, Benjamin EJ, et al. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. *Circulation*. 2014;129(3):e28–e292. doi:10.1161/01.cir.0000441139.02102.80
- Otto CM, Prendergast B. Aortic-valve stenosis from patients at risk to severe valve obstruction. N Engl J Med. 2014;371(8):744– 756. doi:10.1056/NEJMra1313875
- Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. *Lancet*. 2006;368(9540):1005–1011. doi:10.1016/ s0140-6736(06)69208-8
- Vahanian A, Alfieri O, Andreotti F, Antunes MJ, et al. Guidelines on the management of valvular heart disease (version 2012). *Eur Heart J.* 2012;33(19):2451–2496. doi:10.1093/eurheartj/ehs109
- Genereux P, Stone GW, O'Gara PT, Marquis-Gravel G, et al. Natural history, diagnostic approaches, and therapeutic strategies for patients with asymptomatic severe aortic stenosis. J Am Coll Cardiol. 2016;67(19):2263–2288. doi:10.1016/j.jacc.2016.02.057
- Ross Jr R, Braunwald E. Aortic stenosis. *Circulation*. 1968;37 (Suppl.V):61–67.
- Turina J, Hess O, Sepulcri F, Krayenbuehl HP. Spontaneous course of aortic valve disease. Eur Heart J. 1987;8(5):471-483.
- Kelly TA, Rothbart RM, Cooper CM, Kaiser DL, Smucker ML, Gibson RS. Comparison of outcome of asymptomatic to symptomatic patients older than 20 years of age with valvular aortic stenosis. *Am J Cardiol.* 1988;61(1):123–130.
- 9. Bach DS, Siao D, Girard SE, Duvernoy C, McCallister Jr BD, Gualano SK. Evaluation of patients with severe symptomatic aortic stenosis who do not undergo aortic valve replacement the potential role of subjectively overestimated operative risk. *Circ Cardiovasc Qual Outcomes.* 2009;2:533–539.
- Varadarajan P, Kapoor N, Bansal RC, Pai RG. Clinical profile and natural history of 453 nonsurgically managed patients with severe aortic stenosis. *Ann Thorac Surg.* 2006;82(6):2111–2115. doi:10.1016/j.athoracsur.2006.07.048
- Dichtl W, Alber HF, Feuchtner GM, Hintringer F, et al. Prognosis and risk factors in patients with asymptomatic aortic stenosis and their modulation by atorvastatin (20 mg). *Am J Cardiol.* 2008;102 (6):743–748. doi:10.1016/j.amjcard.2008.04.060
- Busseuil D, Shi Y, Mecteau M, Brand G, et al. Regression of aortic valve stenosis by ApoA-I mimetic peptide infusions in rabbits. *Br J Pharmacol.* 2008;154(4):765–773. doi:10.1038/bjp.2008.122
- Rajamannan NM, Subramaniam M, Springett M, Sebo TC, et al. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. *Circulation*. 2002;105(22):2660–2665.
- Hillis LD, Smith PK, Anderson JL, Bittl JA, et al. 2011 ACCF/ AHA guideline for coronary artery bypass graft surgery. A report

of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons. *J Am Coll Cardiol.* 2011;58(24):e123–210. doi:10.1016/j.jacc.2011.08.009

- Kodali SK, Williams MR, Smith CR, Svensson LG, et al. Twoyear outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med. 2012;366(18):1686–1695. doi:10.1056/ NEJMoa1200384
- Leon MB, Smith CR, Mack M, Miller DC, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363(17):1597–1607. doi:10.1056/NEJMoa1008232
- Adams DH, Popma JJ, Reardon MJ, Yakubov SJ, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med. 2014;370(19):1790–1798. doi:10.1056/ NEJMoa1400590
- Lund O. The effect of aortic valve replacement on survival. Circulation. 1990;82(1):124–139.
- Nishimura RA, Otto CM, Bonow RO, Carabello BA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(22):2438–2488. doi:10.1016/j.jacc.2014.02.537
- 20. The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Guidelines on the management of valvular heart disease (version) 2012). *Eur Heart J.* 2012;33(19):2451–2496. doi:10.1093/eurheartj/ehs109
- Pellikka PA, Nishimura RA, Bailey KR, Tajik AJ. The natural history of adults with asymptomatic, hemodynamically significant aortic stenosis. J Am Coll Cardiol. 1990;15(5):1012–1017.
- Pellikka PA, Sarano ME, Nishimura RA, Malouf JF, et al. Outcome of 622 adults with asymptomatic, hemodynamically significant aortic stenosis during prolonged follow-up. *Circulation*. 2005;111 (24):3290–3295. doi:10.1161/CIRCULATIONAHA.104.495903.
- Pai RG, Kapoor N, Bansal RC, Varadarajan P. Malignant natural history of asymptomatic severe aortic stenosis: benefit of aortic valve replacement. *Ann Thorac Surg.* 2006;82(6):2116–2122. doi:10.1016/j.athoracsur.2006.07.043
- Taniguchi T, Morimoto T, Shiomi H, Ando K, et al. Initial surgical versus conservative strategies in patients with asymptomatic severe aortic stenosis. J Am Coll Cardiol. 2015;66(25):2827– 2838. doi:10.1016/j.jacc.2015.10.001
- 25. Baumgartner H. Management of asymptomatic aoric stenosis: how helpful is exercise testing? *Eur Heart J.* 2005;26(13):1252– 1254.
- McCann GP, Hillis WS. Surgery in asymptomatic aortic stenosis. BMJ. 2004;328(7431):63–64. doi:10.1136/bmj.328.7431.63
- Pellikka PA. Predicting outcome in asymptomatic aortic stenosis: should we measure the severity of obstruction or its physiological consequences? *Eur Heart J.* 2010;31:2191–2193.
- Carabello BA. Timing of valve replacement in aortic stenosis. Moving closer to perfection. *Circulation*. 1997;95(9):2241–2243.
- 29. Otto CM. Predictors of outcome in asymptomatic aortic stenosis (Letter). N Engl J Med. 2001;344(3):228-229.
- Pellikka PA. Observation for mildly symptomatic normal-flow, low-gradient severe aortic stenosis: caution advised. *Heart*. 2015;101(17):1349–1350. doi:10.1136/heartjnl-2015-307842
- Lund O, Nielsen TT, Emmertsen K, Flo C, et al. Mortality and worsening of prognostic profile during waiting time for valve replacement in aortic stenosis. *Thorac Cardiovasc Surg.* 1996;44 (6):289–295. doi:10.1055/s-2007-1012039
- Society of Thoracic Surgeons. STS Adult Cardiac Surgery Database – Period Ending 3/31/2015 Executive Summary Contents. http://www.sts.org/sites/default/files/documents/ 2015Harvest2_ExecutiveSummary.pdf. Published 2015. Accessed September 10, 2015.

- Lancellotti P, Magne J, Donal E, Davin L, et al. Clinical outcome in asymptomatic severe aortic stenosis: insights from the new proposed aortic stenosis grading classification. J Am Coll Cardiol. 2012;59(3):235–243. doi:10.1016/j.jacc.2011.08.072
- Clavel MA, Magne J, Pibarot P. Low-gradient aortic stenosis. Eur Heart J. 2016;37(34):2645–2657. doi:10.1093/eurheartj/ehw096
- Lindman BR, Clavel MA, Mathieu P, Iung B, et al. Calcific aortic stenosis. Nat Rev Dis Primers. 2016;2:16006. doi:10.1038/ nrdp.2016.6.
- 36. Nadra I, Mason JC, Philippidis P, Florey O, et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? *Circ Res.* 2005; 96(12):1248–1256. doi:10.1161/01.RES.0000171451.88616.c2
- Olsson M, Thyberg J, Nilsson J. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. *Arterioscler Thromb Vasc Biol.* 1999; 19(5)1218–1222.
- Pawade TA, Newby DE, Dweck MR. Calcification in aortic stenosis: the skeleton key. J Am Coll Cardiol. 2015;66(5):561–577. doi:10.1016/j.jacc.2015.05.066
- Parenica J, Nemec P, Tomandl J, Ondrasek J, et al. Prognostic utility of biomarkers in predicting of one-year outcomes in patients with aortic stenosis treated with transcatheter or surgical aortic valve implantation. *PLoS One*. 2012;7:e48851. doi:10.1371/ journal.pone.0048851
- Yarbrough WM, Mukherjee R, Ikonomidis JS, Zile MR, Spinale FG. Myocardial remodeling with aortic stenosis and after aortic valve replacement: mechanisms and future prognostic implications. J Thorac Cardiovasc Surg. 2012;143(3):656–664. doi:10.1016/j. jtcvs.2011.04.044
- 41. Fielitz J, Leuschner M, Zurbrügg HR, Hannack B, et al. Regulation of matrix metalloproteinases and their inhibitors in the left ventricular myocardium of patients with aortic stenosis. *J Mol Med* (*Berl*). 2004;82(12):809–820.
- Kapelouzou A, Tsourelis L, Kaklamanis L, Degiannis D, Kogerakis N, Cokkinos DV. Serum and tissue biomarkers in aortic stenosis. *Glob Cardiol Sci Pract*. 2015;2015(4):49. doi:10.5339/gcsp.2015.49
- Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. *Circulation*. 2000;102(4):470–479.
- 44. Hein S, Arnon E, Kostin S, Schonburg M, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. *Circulation*. 2003;107(7):984–991.
- Steadman CD, Ray S, Ng LL, McCann GP. Natriuretic peptides in common valvular heart disease. J Am Coll Cardiol. 2010;55 (19):2034–2048. doi:10.1016/j.jacc.2010.02.021
- 46. Jourdain P, Jondeau G, Funck F, Gueffet P, et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol. 2007;49(16):1733–1739. doi:10.1016/j.jacc.2006.10.081
- Weber M, Arnold R, Rau M, Brandt R, et al. Relation of N-terminal pro-B-type natriuretic peptide to severity of valvular aortic stenosis. *Am J Cardiol.* 2004;94(6):740–745. doi:10.1016/j. amjcard.2004.05.055
- Nessmith MG, Fukuta H, Brucks S, Little WC. Usefulness of an elevated B-type natriuretic peptide in predicting survival in patients with aortic stenosis treated without surgery. *Am J Cardiol.* 2005;96:1445–1448.
- Bergler-Klein J, Klaar U, Heger M, Rosenhek R, et al. Natriuretic peptides predict symptom-free survival and postoperative outcome in severe aortic stenosis. *Circulation*. 2004;109(19):2302– 2308. doi:10.1161/01.cir.0000126825.50903.18
- Gerber IL, Stewart RA, Legget ME, West TM, et al. Increased plasma natriuretic peptide levels reflect symptom onset in aortic stenosis. *Circulation*. 2003;107(14):1884–1890. doi:10.1161/01. cir.0000060533.79248.0c
- Lim P, Monin JL, Monchi M, Garot J, et al. Predictors of outcome in patients with severe aortic stenosis and normal left ventricular function: role of B-type natriuretic peptide. *Eur Heart J.* 2004; 25(22):2048–2053. doi:10.1016/j.ehj.2004.09.033

- Lancellotti P, Moonen M, Magne J, O'Connor K, et al. Prognostic effect of long-axis left ventricular dysfunction and B-type natriuretic peptide levels in asymptomatic aortic stenosis. *Am J Cardiol.* 2010;105(3):383–388. doi:10.1016/j.amjcard.2009.09.043
- Capoulade R, Magne J, Dulgheru R, Hachicha Z, et al. Prognostic value of plasma B-type natriuretic peptide levels after exercise in patients with severe asymptomatic aortic stenosis. *Heart*. 2014;100 (20):1606–1612. doi:10.1136/heartjnl-2014-305729
- 54. Farre N, Gomez M, Molina L, Cladellas M, et al. Prognostic value of NT-proBNP and an adapted monin score in patients with asymptomatic aortic stenosis. *Rev Esp Cardiol (Engl Ed).* 2014; 67(1):52–57. doi:10.1016/j.rec.2013.06.020
- Clavel MA, Malouf J, Michelena HI, Suri RM, et al. B-type natriuretic peptide clinical activation in aortic stenosis: impact on long-term survival. J Am Coll Cardiol. 2014;63(19):2016– 2025. doi:10.1016/j.jacc.2014.02.581
- 56. Ben-Dor I, Minha S, Barbash IM, Aly O, et al. Correlation of brain natriuretic peptide levels in patients with severe aortic stenosis undergoing operative valve replacement or percutaneous transcatheter intervention with clinical, echocardiographic, and hemodynamic factors and prognosis. *Am J Cardiol.* 2013;112(4):574– 579. doi:10.1016/j.amjcard.2013.04.023
- Cimadevilla C, Cueff C, Hekimian G, Dehoux M, et al. Prognostic value of B-type natriuretic peptide in elderly patients with aortic valve stenosis: the COFRASA-GENERAC study. *Heart.* 2013; 99(7):461–467. doi:10.1136/heartjnl-2012-303284
- O'Neill BP, Guerrero M, Thourani VH, Kodali S, et al. Prognostic value of serial B-type natriuretic peptide measurement in transcatheter aortic valve replacement (from the PARTNER Trial). *Am J Cardiol.* 2015;115(9):1265–1272. doi:10.1016/j.amjcard.2015.01.561.
- Abramowitz Y, Chakravarty T, Jilaihawi H, Lee C, et al. Impact of preprocedural B-type natriuretic peptide levels on the outcomes after transcatheter aortic valve implantation. *Am J Cardiol.* 2015;116(12):1904–1909. doi:10.1016/j.amjcard.2015.09.031
- Koskinas KC, O'Sullivan CJ, Heg D, Praz F, et al. Effect of B-type natriuretic peptides on long-term outcomes after transcatheter aortic valve implantation. *Am J Cardiol.* 2015;116(10):1560– 1565. doi:10.1016/j.amjcard.2015.08.016
- Goodman A, Kusunose K, Popovic ZB, Parikh R, et al. Synergistic utility of brain natriuretic peptide and left ventricular strain in patients with significant aortic stenosis. J Am Heart Assoc. 2016;5 (1):e002561. doi:10.1161/JAHA.115.002561.
- de Lemos JA. Increasingly sensitive assays for cardiac troponins: a review. JAMA. 2013;309(21):2262–2269. doi:10.1001/jama.2013.5809
- 63. Chin CW, Shah AS, McAllister DA, Joanna Cowell S, et al. Highsensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis. *Eur Heart J.* 2014;35(34):2312–2321. doi:10.1093/ eurheartj/ehu189
- 64. Lindman BR, Breyley JG, Schilling JD, Vatterott AM, et al. Prognostic utility of novel biomarkers of cardiovascular stress in patients with aortic stenosis undergoing valve replacement. *Heart*. 2015;101(17):1382–1388. doi:10.1136/heartjnl-2015-307742
- 65. Kohler WM, Freitag-Wolf S, Lambers M, Lutz M, et al. Preprocedural but not periprocedural high-sensitive Troponin T (hsTNT) levels predict outcome in patients undergoing transcatheter aortic valve implantation (TAVI). *Cardiovasc Ther.* 2016;34 (6):385–396. doi:10.1111/1755-5922.12208.
- 66. Chorianopoulos E, Krumsdorf U, Geis N, Pleger ST, et al. Preserved prognostic value of preinterventional troponin T levels despite successful TAVI in patients with severe aortic stenosis. *Clin Res Cardiol.* 2014;103(1):65–72. doi:10.1007/s00392-013-0624-8
- 67. Inoue K, Suwa S, Ohta H, Itoh S, et al. Heart fatty acid-binding protein offers similar diagnostic performance to high-sensitivity troponin T in emergency room patients presenting with chest pain. *Circ J.* 2011;75(12):2813–2820.
- Goto T, Takase H, Toriyama T, Sugiura T, et al. Circulating concentrations of cardiac proteins indicate the severity of congestive heart failure. *Heart*. 2003;89(11):1303–1307.

- Iida M, Yamazaki M, Honjo H, Kodama I, Kamiya K. Predictive value of heart-type fatty acid-binding protein for left ventricular remodelling and clinical outcome of hypertensive patients with mild-to-moderate aortic valve diseases. *J Hum Hypertens*. 2007;21 (7):551–557. doi:10.1038/sj.jhh.1002195
- Kouris NT, Zacharos ID, Kontogianni DD, Goranitou GS, et al. The significance of CA125 levels in patients with chronic congestive heart failure. Correlation with clinical and echocardiographic parameters. *Eur J Heart Fail.* 2005;7(2):199–203. doi:10.1016/j.ejheart.2004.07.015
- Monteiro S, Franco F, Costa S, Monteiro P, et al. Prognostic value of CA125 in advanced heart failure patients. *Int J Cardiol.* 2010;140(1):115–118. doi:10.1016/j.ijcard.2008.11.023
- Husser O, Nunez J, Nunez E, Holzamer A, et al. Tumor marker carbohydrate antigen 125 predicts adverse outcome after transcatheter aortic valve implantation. *JACC Cardiovasc Interv.* 2013;6 (5):487–496. doi:10.1016/j.jcin.2013.02.006
- Antonini-Canterin F, Popescu BA, Popescu AC, Beladan CC, et al. Heart failure in patients with aortic stenosis: clinical and prognostic significance of carbohydrate antigen 125 and brain natriuretic peptide measurement. *Int J Cardiol.* 2008;128(3):406– 412. doi:10.1016/j.ijcard.2007.05.039
- Sinning JM, Wollert KC, Sedaghat A, Widera C, et al. Risk scores and biomarkers for the prediction of 1-year outcome after transcatheter aortic valve replacement. *Am Heart J.* 2015;170(4):821– 829. doi:10.1016/j.ahj.2015.07.003
- Krau NC, Lunstedt NS, Freitag-Wolf S, Brehm D, et al. Elevated growth differentiation factor 15 levels predict outcome in patients undergoing transcatheter aortic valve implantation. *Eur J Heart Fail.* 2015;17(9):945–955. doi:10.1002/ejhf.318.
- Wollert KC, Kempf T. Growth differentiation factor 15 in heart failure: an update. *Curr Heart Fail Rep.* 2012;9(4):337–345. doi:10.1007/s11897-012-0113-9
- 77. Olson KA, Beatty AL, Heidecker B, Regan MC, et al. Association of growth differentiation factor 11/8, putative anti-ageing factor, with cardiovascular outcomes and overall mortality in humans: analysis of the Heart and Soul and HUNT3 cohorts. *Eur Heart J.* 2015;36(48):3426–3434. doi:10.1093/eurheartj/ehv385
- Schafer MJ, Atkinson EJ, Vanderboom PM, Kotajarvi B, et al. Quantification of GDF11 and myostatin in human aging and cardiovascular disease. *Cell Metab.* 2016;23(6):1207–1215. doi:10.1016/j.cmet.2016.05.023
- 79. Aung N, Dworakowski R, Byrne J, Alcock E, et al. Progressive rise in red cell distribution width is associated with poor outcome after transcatheter aortic valve implantation. *Heart.* 2013;99 (17):1261–1266. doi:10.1136/heartjnl-2013-303910
- Aung N, Ling HZ, Cheng AS, Aggarwal S, et al. Expansion of the red cell distribution width and evolving iron deficiency as predictors of poor outcome in chronic heart failure. *Int J Cardiol.* 2013;168(3):1997–2002. doi:10.1016/j.ijcard.2012.12.091
- Furer A, Finkelstein A, Halkin A, Revivo M, et al. High red blood cell distribution width and preclinical carotid atherosclerosis. *Biomarkers*. 2015;20(6–7):376–381. doi:10.3109/1354750X.2015.1096304
- 82. Soderholm M, Borne Y, Hedblad B, Persson M, Engstrom G. Red cell distribution width in relation to incidence of stroke and carotid atherosclerosis: a population-based cohort study. *PLoS One*. 2015;10(5):e0124957. doi:10.1371/journal.pone.0124957
- Shao Q, Li L, Li G, Liu T. Prognostic value of red blood cell distribution width in heart failure patients: a meta-analysis. *Int J Cardiol.* 2015;179:495–499. doi:10.1016/j.ijcard.2014.11.042
- 84. Muhlestein J, Lappe D, Anderson J, Budge D, et al. Both initial red cell distribution width (RDW) and change in RDW during heart failure hospitalization are associated with length of hospital stay and 30-day outcomes. *Int J Lab Hematol.* 2016;38(3):328–337.
- Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. *Am J Cardiol.* 2003;91 (3A):7A–11A.
- 86. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of

ROS. *Circulation*. 2003;108(16):1912–1916. doi:10.1161/01. cir.0000093660.86242.bb

- Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: applications to cardiovascular research and practice. *Redox Biol.* 2013;1:483–491. doi:10.1016/j.redox.2013.07.006
- Leon MB, Piazza N, Nikolsky E, Blackstone EH, et al. Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium. J Am Coll Cardiol. 2011;57 (3):253–269. doi:10.1016/j.jacc.2010.12.005
- Villar AV, Llano M, Cobo M, Exposito V, et al. Gender differences of echocardiographic and gene expression patterns in human pressure overload left ventricular hypertrophy. *J Mol Cell Cardiol.* 2009;46(4):526–535. doi:http://dx.doi.org/10.1016/j. yjmcc.2008.12.024
- 90. Heymans S, Schroen B, Vermeersch P, Milting H, et al. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. *Circulation*. 2005;112(8):1136–1144.
- Querejeta R, Lopez B, Gonzalez A, Sanchez E, et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. *Circulation*. 2004; 110(10):1263–1268. doi:10.1161/01.CIR.0000140973.60992.9A
- Lopez B, Gonzalez A, Querejeta R, Larman M, Diez J. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol. 2006;48(1):89–96. doi:10.1016/j. jacc.2006.01.077.
- 93. Kupari M, Laine M, Turto H, Lommi J, Werkkala K. Circulating collagen metabolites, myocardial fibrosis and heart failure in aortic valve stenosis. *J Heart Valve Dis.* 2013;22(2):166–176.
- 94. Ellims AH, Taylor AJ, Mariani JA, Ling LH, et al. Evaluating the utility of circulating biomarkers of collagen synthesis in hyper-trophic cardiomyopathy. *Circ Heart Fail.* 2014;7(2):271–278. doi:10.1161/CIRCHEARTFAILURE.113.000665
- Chalikias GK, Tziakas DN. Biomarkers of the extracellular matrix and of collagen fragments. *Clin Chim Acta*. 2015;443:39–47. doi:10.1016/j.cca.2014.06.028
- Lopez B, Gonzalez A, Diez J. Circulating biomarkers of collagen metabolism in cardiac diseases. *Circulation*. 2010;121(14):1645– 1654. doi:10.1161/CIRCULATIONAHA.109.912774
- Pascual-Figal DA, Januzzi JL. The biology of ST2: the International ST2 Consensus Panel. Am J Cardiol. 2015;115(7 Suppl):3B–7B. doi:10.1016/j.amjcard.2015.01.034
- Pascual-Figal DA, Manzano-Fernandez S, Boronat M, Casas T, et al. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. *Eur J Heart Fail*. 2011;13(7):718–725. doi:10.1093/eurjhf/hfr047
- 99. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. *J Clin Invest.* 2007;117 (6):1538–1549. doi:10.1172/jci30634
- 100. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. *Circ Heart Fail*. 2009;2 (4):311–319. doi:10.1161/circheartfailure.108.833707
- 101. Weir RA, Miller AM, Murphy GE, Clements S, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. 2010;55(3):243–250. doi:10.1016/j.jacc.2009.08.047
- 102. Januzzi JL, Jr., Peacock WF, Maisel AS, Chae CU, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50(7):607–613. doi:10.1016/j.jacc.2007.05.014

- 103. deFilippi C, Daniels LB, Bayes-Genis A. Structural heart disease and ST2: cross-sectional and longitudinal associations with echocardiography. Am J Cardiol. 2015;115(7 Suppl.):59B–63B. doi:10.1016/j.amjcard.2015.01.042
- 104. Bartunek J, Delrue L, Van Durme F, Muller O, et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol. 2008; 52(25):2166–2174. doi:10.1016/j.jacc.2008.09.027
- 105. Lancellotti P, Dulgheru R, Magne J, Henri C, et al. Elevated plasma soluble ST2 is associated with heart failure symptoms and outcome in aortic stenosis. *PLoS One*. 2015;10(9):e0138940.
- 106. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. *Circulation*. 2004; 110(19):3121–3128. doi:10.1161/01.CIR.0000147181.65298.4D
- 107. Kramer F, Milting H. Galectin-3 in cardiovascular disease. Gen Method Biomarker Res Appl. 2015;709–729. doi:10.1007/978-94-007-7696-8_32
- Chin CW, Djohan AH, Lang CC. The role of cardiac biochemical markers in aortic stenosis. *Biomarkers*. 2016;21(4):316–327. doi:10.3109/1354750X.2016.1141993
- 109. Baldenhofer G, Zhang K, Spethmann S, Laule M, et al. Galectin-3 predicts short- and long-term outcome in patients undergoing transcatheter aortic valve implantation (TAVI). *Int J Cardiol.* 2014;177(3):912–917. doi:10.1016/j.ijcard.2014.10.010
- 110. Srivatsan V, George M, Shanmugam E. Utility of galectin-3 as a prognostic biomarker in heart failure: where do we stand? *Eur J Prev Cardiol* 2015;22(9):1096–1110. doi:10.1177/2047487314552797
- 111. Côté C, Pibarot P, Després J-P, Mohty D, et al. Association between circulating oxidised low-density lipoprotein and fibrocalcific remodelling of the aortic valve in aortic stenosis. *Heart*. 2008;94(9):1175–1180. doi:10.1136/hrt.2007.125740
- 112. Cote N, Pibarot P, Pepin A, Fournier D, et al. Oxidized lowdensity lipoprotein, angiotensin II and increased waist cirumference are associated with valve inflammation in prehypertensive patients with aortic stenosis. *Int J Cardiol.* 2010;145(3):444–449. doi:10.1016/j.ijcard.2009.05.054
- 113. Mohty D, Pibarot P, Despres JP, Cote C, et al. Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis. *Arterioscler Thromb Vasc Biol.* 2008;28(1):187–193. doi:10.1161/ atvbaha.107.154989
- 114. Capoulade R, Chan KL, Yeang C, Mathieu P, et al. Oxidized phospholipids, lipoprotein(a), and progression of calcific aortic valve stenosis. J Am Coll Cardiol. 2015;66(11):1236–1246. doi:10.1016/j.jacc.2015.07.020
- 115. Capoulade R, Mahmut A, Tastet L, Arsenault M, et al. Impact of plasma Lp-PLA2 activity on the progression of aortic stenosis: the PROGRESSA study. *JACC Cardiovasc Imaging*. 2015;8(1):26–33. doi:10.1016/j.jcmg.2014.09.016
- 116. de las Fuentes L, Herrero P, Peterson LR, Kelly DP, Gropler RJ, Davila-Roman VG. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. *Hypertension*. 2003;41(1):83–87.
- 117. Heather LC, Howell NJ, Emmanuel Y, Cole MA, et al. Changes in cardiac substrate transporters and metabolic proteins mirror the metabolic shift in patients with aortic stenosis. *PLoS One.* 2011; 6(10):e26326. doi:10.1371/journal.pone.0026326
- 118. Ambros V. The functions of animal microRNAs. *Nature*. 2004;431 (7006):350–355. doi:10.1038/nature02871
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell*. 2004;116(2):281–297.
- Latronico MV, Condorelli G. MicroRNAs and cardiac pathology. Nat Rev Cardiol. 2009;6(6):419–429. doi:10.1038/nrcardio.2009.56
- 121. Oury C, Servais L, Bouznad N, Hego A, Nchimi A, Lancellotti P. MicroRNAs in valvular heart diseases: potential role as markers and actors of valvular and cardiac remodeling. *Int J Mol Sci.* 2016;17(7):1120
- 122. Garcia R, Villar AV, Cobo M, Llano M, et al. Circulating levels of miR-133a predict the regression potential of left ventricular

hypertrophy after valve replacement surgery in patients with aortic stenosis. *J Am Heart Assoc.* 2013;2(4):e000211. doi:10.1161/jaha.113.000211

- 123. Villar AV, Garcia R, Merino D, Llano M, et al. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. *Int J Cardiol.* 2013;167(6):2875–2881. doi:10.1016/j.ijcard.2012.07.021
- 124. Rosjo H, Dahl MB, Bye A, Andreassen J, et al. Prognostic value of circulating microRNA-210 levels in patients with moderate to severe aortic stenosis. *PLoS One*. 2014;9(3):e91812. doi:10.1371/ journal.pone.0091812
- 125. Turner NA, Nolasco L, Ruggeri ZM, Moake JL. Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. *Blood.* 2009;114(24):5102–5111. doi:10.1182/blood-2009-07-231597
- Tsai HM, Sussman, II, Nagel RL. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. *Blood*. 1994;83(8):2171–2179.
- 127. Pareti FI, Lattuada A, Bressi C, Zanobini M, et al. Proteolysis of von Willebrand factor and shear stress-induced platelet aggregation in patients with aortic valve stenosis. *Circulation*. 2000;102 (11):1290–1295.
- Vincentelli A, Susen S, Le Tourneau T, Six I, et al. Acquired von Willebrand syndrome in aortic stenosis. N Engl J Med. 2003; 349(4):343–349. doi:10.1056/NEJMoa022831
- 129. Spangenberg T, Budde U, Schewel D, Frerker C, et al. Treatment of acquired von Willebrand syndrome in aortic stenosis with transcatheter aortic valve replacement. *JACC Cardiovasc Interv*. 2015;8(5):692–700. doi:10.1016/j.jcin.2015.02.008
- Genereux P, Poulin F, Leon MB. von Willebrand disease after TAVR: the missing link? *JACC Cardiovasc Interv.* 2015;8(9):1266. doi:10.1016/j.jcin.2015.05.009
- Van Belle E, Rauch A, Vincent F, Robin E, et al. Von Willebrand factor multimers during transcatheter aortic-valve replacement. N Engl J Med. 2016;375(4):335–344. doi:10.1056/NEJMoa1505643.
- Rosenhek R, Klaar U, Schemper M, Scholten C, et al. Mild and moderate aortic stenosis. Natural history and risk stratification by echocardiography. *Eur Heart J.* 2004;25(3):199–205. doi:10.1016/j. ehj.2003.12.002
- 133. Rossebo AB, Pedersen TR, Boman K, Brudi P, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 2008;359(13):1343–1356. doi:10.1056/NEJMoa0804602
- 134. Rafique AM, Biner S, Ray I, Forrester JS, Tolstrup K, Siegel RJ. Meta-analysis of prognostic value of stress testing in patients with asymptomatic severe aortic stenosis. *Am J Cardiol.* 2009; 104(7):972–977. doi:10.1016/j.amjcard.2009.05.044
- 135. Iung B, Gohlke-Barwolf C, Tornos P, Tribouilloy C, et al. Recommendations on the management of the asymptomatic patient with valvular heart disease. *Eur Heart J.* 2002; 23(16):1253–1266.
- Lancellotti P, Lebois F, Simon M, Tombeux C, Chauvel C, Pierard LA. Prognostic importance of quantitative exercise Doppler echocardiography in asymptomatic valvular aortic stenosis. *Circulation*. 2005;112 (9 Suppl.):I377–382. doi:10.1161/CIRCULATIONAHA.104.523274
- 137. Marechaux S, Hachicha Z, Bellouin A, Dumesnil JG, et al. Usefulness of exercise-stress echocardiography for risk stratification of true asymptomatic patients with aortic valve stenosis. *Eur Heart J.* 2010;31(11):1390–1397. doi:10.1093/eurheartj/ehq076
- Lancellotti P, Magne J, Donal E, O'Connor K, et al. Determinants and prognostic significance of exercise pulmonary hypertension in asymptomatic severe aortic stenosis. *Circulation*. 2012;126(7):851– 859. doi:10.1161/circulationaha.111.088427
- 139. Zilberszac R, Gabriel H, Schemper M, Laufer G, Maurer G, Rosenhek R. Asymptomatic severe aortic stenosis in the

elderly. JACC Cardiovasc Imaging. 2016;10(1):43-50. doi:10.1016/j.jcmg.2016.05.015

- Otto CM, Burwash IG, Legget ME, Munt BI, et al. Prospective study of asymptomatic valvular aortic stenosis. Clinical, echocardiographic, and exercise predictors of outcome. *Circulation*. 1997;95(9):2262–2270.
- 141. Gerber IL, Legget ME, West TM, Richards AM, Stewart RA. Usefulness of serial measurement of N-terminal pro-brain natriuretic peptide plasma levels in asymptomatic patients with aortic stenosis to predict symptomatic deterioration. *Am J Cardiol.* 2005;95(7):898–901. doi:10.1016/j.amjcard.2004.11.053
- 142. Weber M, Hausen M, Arnold R, Nef H, et al. Prognostic value of N-terminal pro-B-type natriuretic peptide for conservatively and surgically treated patients with aortic valve stenosis. *Heart*. 2006;92(11):1639–1644. doi:10.1136/hrt.2005.085506
- 143. Feuchtner GM, Muller S, Grander W, Alber HF, et al. Aortic valve calcification as quantified with multislice computed tomography predicts short-term clinical outcome in patients with asymptomatic aortic stenosis. *J Heart Valve Dis.* 2006;15(4):494–498.
- 144. Van Pelt NC, Kerr AJ, Legget ME, Pasupati S, et al. Increased B-type natriuretic peptide is associated with an abnormal blood pressure response to exercise in asymptomatic aortic stenosis. *Int* J Cardiol. 2008;127(3):313–320. doi:10.1016/j.ijcard.2007.07.172
- 145. Poh KK, Chan MY, Yang H, Yong QW, Chan YH, Ling LH. Prognostication of valvular aortic stenosis using tissue Doppler echocardiography: underappreciated importance of late diastolic mitral annular velocity. J Am Soc Echocardiogr. 2008;21(5):475– 481. doi:10.1016/j.echo.2007.08.031
- 146. Monin JL, Lancellotti P, Monchi M, Lim P, et al. Risk score for predicting outcome in patients with asymptomatic aortic stenosis. *Circulation.* 2009;120(1):69–75. doi:10.1161/circulationaha.108. 808857
- 147. Katz M, Tarasoutchi F, Pesaro AE, Lopes RD, et al. Natriuretic peptides and long-term mortality in patients with severe aortic stenosis. *J Heart Valve Dis.* 2012;21(3):331–336.
- 148. Henri C, Dulgheru R, Magne J, Caballero L, et al. Impact of serial B-type natriuretic peptide changes for predicting outcome in asymptomatic patients with aortic stenosis. *Can J Cardiol.* 2016;32(2):183–189. doi:10.1016/j.cjca.2015.06.007
- 149. Rosjo H, Andreassen J, Edvardsen T, Omland T. Prognostic usefulness of circulating high-sensitivity troponin T in aortic stenosis and relation to echocardiographic indexes of cardiac function and anatomy. *Am J Cardiol.* 2011;108(1):88–91. doi:10.1016/j.amjcard.2011.02.346
- 150. Solberg OG, Ueland T, Wergeland R, Dahl CP, et al. High-sensitive troponin T and N-terminal-brain-natriuretic-peptide predict outcome in symptomatic aortic stenosis. *Scand Cardiovasc J*. 2012;46(5):278–285. doi:10.3109/14017431.2012.687836
- 151. Saito T, Hojo Y, Hirose M, Ikemoto T, Katsuki T, Kario K. Highsensitivity troponin T is a prognostic marker for patients with aortic stenosis after valve replacement surgery. J Cardiol. 2013; 61(5):342–347. doi:10.1016/j.jjcc.2013.01.005
- 152. Frank D, Stark S, Lutz M, Weissbrodt A, et al. Preprocedural high-sensitive troponin predicts survival after transcatheter aortic valve implantation (TAVI). *Int J Cardiol.* 2013;169(3):e38–39. doi:10.1016/j.ijcard.2013.08.108
- 153. Blackshear JL, Wysokinska EM, Safford RE, Thomas CS, et al. Indexes of von Willebrand factor as biomarkers of aortic stenosis severity (from the Biomarkers of Aortic Stenosis Severity [BASS] study). Am J Cardiol. 2013;111(3):374–381. doi:10.1016/j.amjcard.2012.10.015
- 154. Van Belle E, Rauch A, Vincentelli A, Jeanpierre E, et al. Von Willebrand factor as a biological sensor of blood flow to monitor percutaneous aortic valve interventions. *Circ Res.* 2015; 116(7):1193–1201. doi:10.1161/CIRCRESAHA.116.305046