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EDITORIAL

Bioprosthetic Valve Dysfunction: A Complex Biological Process
Stephanie L. Sellers, PhDa,b and Jonathon A. Leipsic, MDa,b

aDepartment of Radiology, St. Paul’s Hospital and University of British Columbia, Vancouver, Canada; bCentre for Heart Lung Innovation, St. Paul’s
Hospital and University of British Columbia, Vancouver, Canada

Life is a perpetual instruction in cause and effect.
—Ralph Waldo Emerson

Valvular heart disease remains a significant economic and
societal health issue.1 Fortunately, the advent of bioprosthetic
heart valves (BPHVs) has served as a revolutionary treatment
option first with surgical valve replacement and then with the
advent of transcatheter valve replacement, which continues to
evolve. Despite the general success of BPHVs, valve dysfunc-
tion and deterioration remain key problems to address that
are often complicated by determining cause and effect in
a complex biological system.2–4

In this issue of Structural Heart, Ramana and colleagues5

propose thrombus and calcification as the primary mediators
in the dysfunction of BPHV. The role of calcium and throm-
bus causing dysfunction as the authors propose is highly
supported by both clinical imaging studies and analysis of
explanted valves; thrombus and calcium are noted on dys-
functional and failed BPHVs and in the setting of increased
trans-valvular gradients.2 How the pathways associated with
thrombus formation and calcification play out in BPHVs and
potentially interact still requires further study; while calcifica-
tion has been proposed as a platform for thrombus in other
settings including the coronary arteries and on mitral annular
calcification,6,7 thrombus prior to calcification seems consis-
tent with many imaging studies of BPHVs. Early valve throm-
bosis in the absence of calcification is detectable by current
clinical imaging and is also a feature of valves studied on
explant; thrombus has been incidentally noted on routine
post procedural CT imaging within 30 days of SAVR and
TAVR, well before calcification is evident on imaging.
Calcification is also a histopathological feature of valves
implanted for longer durations than those with thrombus
alone with recent analysis of explanted TAVR valves showing
calcification in TAVR explants after 4 years.8–13 On a cellular
basis, thrombus as a mediator of calcium also seems more
likely. Calcification following thrombosis is a well-
documented entity and calcific processes can be a long-term
outcome associated with inflammation which has been shown
at early time-points following BPHV implantation.11,14

Overall, calcification and thrombus are undoubtedly a part
of BPHV dysfunction but perhaps our focus should not be
solely on two entities, but take a wider view of the complex
system that leads to valve dysfunction within a diverse patient
population. BPHV deterioration is complicated by the fact

that SAVR and TAVR valves are not homogeneous in design
or tissue composition.2,15 Moreover, BPHV implanted in dif-
ferent anatomical locations (e.g. mitral versus aortic position)
may be subject to very different variables including flow
patterns and sheer stresses. By design, implant position, or
make, valves may have a varying extent of washout as well as
proprietary fixation and pre-implant treatment regimens that
can potentially affect leaflet degeneration.13,16,17 Awareness
and transparency regarding these differences is essential in
designing the necessary experiments and studies to help
advance our understanding of the mechanisms of structural
valve degeneration and ultimately to advance the science in
a meaningful way so as to prevent its occurrence.

Understanding BPHV degeneration is also complicated by
the complex cellular nature of the process. We commend
Ramana and colleagues for bringing forth these important
questions as they relate to calcification and thrombus as well
as highlighting the interplay of dyslipidemic, metabolic, and
cardiovascular risk factors. How do we now build on this to
fill in the many blanks in the wider view of the complex
system that leads to valve dysfunction? There is much to be
done to advance our understanding as to how to prevent early
valve thrombus. Can we intercede on the pro-thrombotic flow
dynamics and binding affinity of fibrinogen for the collagen
that composes the majority BPHV leaflets? Although glutar-
aldehyde fixation of BPHVs is to improve valve durability, can
we build on this pre-implant treatment to provide more
protection against thrombosis?16,18,19 In doing so, this may
aid in endothelialization of BPHVs and prevent thrombus. To
this end, determining the role of dysfunction of endothelial
cells (ECs) on BPHVS has potential; peripheral endothelial
dysfunction has been associated with BPHV thrombosis, but
little is known of the state of ECs that populate implanted
valves.20 EC dysfunction, through factors such as reduced
nitric oxide production and generation of reactive oxygen
species and inflammatory cytokines would inevitably contri-
bute to valve fibrosis and inflammation.21,22 Thus, would
improving endothelial function, potentially through addres-
sing cardiovascular risk factors as the authors suggest, help?
Reduction of inflammation would certainly be helpful.
Inflammatory cells are a source of chemokines and cytokines
that can be pro-fibrotic. Fibrosis/pannus remains a problem
with BPHV and can be an outcome of organizing thrombus.
Moreover, inflammatory and fibroblast signalling may drive
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a pro-osteogenic environment and remodelling process prone
to the development of dystrophic calcification. This may also
relate to the deposition of oxidized low-density lipoprotein
and glycosaminoglycans as well as expression of proteinases
with the potential to degrade BPHV leaflets.14,23–25

Collectively, the underlying composition of BPHV would
seem to have potential to serve as a biological scaffold for
factors that contribute to SVD. As Ramana and colleagues
detail, thrombus and calcification are major components of
this SVD process. Clinically, we evaluate the outcomes of
these processes through imaging and evaluation of pressures
and patient symptoms. On the bench, we have made strides to
understand the more granular cellular aspects. Creating links

between these two views of BPHV degeneration and under-
standing more about valve thrombosis and calcification as
Ramana and colleagues encourage us to do seems a timely
goal (Figure 1).
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Figure 1. Phenotypes of structural valve degeneration including thrombus, calcification, and fibrosis arise as a result of factors including patient risk factors, valve
type, and cellular response. The outcomes of this complex system can be observed with imaging and histopathological analysis.
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