DANFLU-1

Feasibility of a pragmatic randomized trial to assess the relative effectiveness of high-dose vs. standard-dose quadrivalent influenza vaccine on severe cardio-respiratory outcomes in elderly adults

Background

- Influenza infection is associated with an increased risk of subsequent cardiovascular (CV) events\(^1\) – a risk that can be decreased by vaccination\(^2\)

- Accumulating evidence has demonstrated additional protection against influenza infection and related complications with high-dose (HD) influenza vaccines compared with standard-dose (SD)\(^3\)–\(^4\)

- No individually randomized trial has previously assessed the relative vaccine effectiveness (rVE) of HD quadrivalent influenza vaccines (QIV-HD) compared with SD quadrivalent influenza vaccines (QIV-SD) against CV and respiratory hospitalizations and mortality in an older adult population

- Due to large sample size requirements (approx. 200,000 participants\(^5\)), conducting such a trial would require a number of pragmatic features

Objectives

• To evaluate the feasibility of integrating an individually randomized trial into routine seasonal influenza vaccination practice and using administrative health registries for collection of both baseline, outcome, and safety data

• Secondarily, to descriptively assess the rVE of QIV-HD vs. QIV-SD against a range of severe clinical outcomes
Methods

• The DANFLU-1 trial was a pragmatic, open-label, active-controlled, randomized feasibility trial conducted in Denmark during the 2021/2022 northern hemisphere influenza season

Planned sample size:
- 40,000 participants

Inclusion criteria:
- Age 65-79 years
- Signed informed consent

Exclusion criterion:
- Allergy/hypersensitivity towards the vaccines used in the study

Johansen ND, Modin D, ... , Biering-Sørensen T. *Pilot Feasibility Stud* 2022;8(1):87.
Methods

• Collection of baseline and outcome data including safety surveillance was performed using the Danish nationwide administrative health registries requiring cross-linkage of several registries.

• Definitions of baseline conditions, medication use, and clinical outcomes were prespecified and based on ICD-10 and ATC classification codes.

• Data were retrieved directly from registries without further validation or adjudication.

Johansen ND, Modin D, ... , Biering-Sørensen T. *Pilot Feasibility Stud* 2022;8(1):87.
Trial organization and data flow

- >1,000 decentral vaccination sessions
- Organized by private vaccination provider
- Responsible for inclusion, randomization, and vaccination

- Central trial site
- Study oversight and database management
- Nationwide access to all medical records and lab results

- Nationwide tax-funded public health system
- Nationwide administrative health registries can be crosslinked using social security numbers (SSN)
- Every hospital contact, death, redeemed prescription is captured in the registries
- Used for collection of both baseline, outcome, and safety data

Johansen ND, Modin D, ... , Biering-Sørensen T. *Pilot Feasibility Stud* 2022;8(1):87.
Outcomes

• **Feasibility outcomes:**
 • Participation and inclusion rate
 • Agreement between randomization group and administered vaccine
 • Balance in baseline characteristics between groups
 • Comparison of baseline characteristics between the study population and the general Danish population aged 65-79 years
Outcomes

• Participants were followed for clinical outcomes from 14 days after vaccination (October-November 2021) until May 31, 2022

• Prespecified clinical outcomes:
 • Hospitalization for pneumonia or influenza
 • Hospitalization for respiratory disease
 • Hospitalization for cardio-respiratory disease
 • Hospitalization for cardiovascular disease
 • Hospitalization for any cause
 • All-cause death

Outcomes

• Additional cardiovascular outcomes:
 • Hospitalization for myocardial infarction
 • Hospitalization for atrial fibrillation
 • Hospitalization for stroke
 • Hospitalization for stroke
 • Hospitalization for heart failure
 • Hospitalization for heart failure
 • Cardiovascular death

• The study was not powered for assessment of clinical outcomes
Statistical analysis

- rVE was calculated as 1 minus the relative risk of the specified outcome in the QIV-HD group vs. the QIV-SD group
- rVE = relative risk reduction
Methods - summary

• The design of the DANFLU-1 trial aimed to:
 • Integrate the conduct of a large-scale randomized trial into routine influenza vaccination practice
 • Minimize the burden on participants by requiring only 1 trial visit and no further contacts
 • Rely solely on cross-linked Danish administrative health registries for collection of both baseline, outcome, and safety data
 • Provide a first look at HD rVE against outcomes beyond influenza infection that are critical to public health
 • Raise the bar for quality of evidence in post-licensure vaccine studies
Study flow

99.93% received allocated study vaccine

Complete follow-up data available for 99.97% of participants

ESC CONGRESS 2022
Barcelona & Online
Recruitment rate

11,463 participants enrolled in first 15 days = median 674 per day!
Baseline characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>QIV-HD n = 6,245</th>
<th>QIV-SD n = 6,232</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD)</td>
<td>71.8 (3.9)</td>
<td>71.7 (3.9)</td>
</tr>
<tr>
<td>Female sex, n (%)</td>
<td>2,956 (47.3)</td>
<td>2,921 (46.9)</td>
</tr>
<tr>
<td>Chronic cardiovascular disease, n (%)</td>
<td>1,227 (19.6)</td>
<td>1,313 (21.1)</td>
</tr>
<tr>
<td>Ischemic heart disease, n (%)</td>
<td>450 (7.2)</td>
<td>512 (8.2)</td>
</tr>
<tr>
<td>Heart failure, n (%)</td>
<td>137 (2.2)</td>
<td>138 (2.2)</td>
</tr>
<tr>
<td>Atrial fibrillation, n (%)</td>
<td>458 (7.3)</td>
<td>420 (6.7)</td>
</tr>
<tr>
<td>Cerebrovascular disease, n (%)</td>
<td>219 (3.5)</td>
<td>237 (3.8)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>3,254 (52.1)</td>
<td>3,215 (51.6)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>574 (9.2)</td>
<td>588 (9.4)</td>
</tr>
<tr>
<td>Chronic lung disease, n (%)</td>
<td>435 (7.0)</td>
<td>415 (6.7)</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease, n (%)</td>
<td>227 (3.6)</td>
<td>190 (3.0)</td>
</tr>
<tr>
<td>Cancer, n (%)</td>
<td>695 (11.1)</td>
<td>668 (10.7)</td>
</tr>
<tr>
<td>Immunodeficiency, n (%)</td>
<td>244 (3.9)</td>
<td>239 (3.8)</td>
</tr>
</tbody>
</table>
Comparison with Danish general population

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DANFLU-1 population</th>
<th>Overall Danish population aged 65-79 years</th>
<th>Absolute difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 12,477</td>
<td>n = 889,689</td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female sex, n (%)</td>
<td>5,877 (47.1)</td>
<td>463,645 (52.1)</td>
<td>-5.0% (-5.9% to -4.1%)</td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>71.7 (3.9)</td>
<td>72.2 (4.2)</td>
<td>-0.4 (-0.3 to -0.5)</td>
</tr>
<tr>
<td>Comorbidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic cardiovascular disease, n (%)</td>
<td>2,540 (20.4)</td>
<td>203,488 (22.9)</td>
<td>-2.5% (-3.2% to -1.8%)</td>
</tr>
<tr>
<td>Ischemic heart disease, n (%)</td>
<td>962 (7.7)</td>
<td>75,251 (8.5)</td>
<td>-0.7% (-1.2% to -0.3%)</td>
</tr>
<tr>
<td>Myocardial infarction, n (%)</td>
<td>306 (2.5)</td>
<td>25,299 (2.8)</td>
<td>-0.4% (-0.7% to -0.1%)</td>
</tr>
<tr>
<td>Heart failure, n (%)</td>
<td>275 (2.2)</td>
<td>26,632 (3.0)</td>
<td>-0.8% (-1.0% to -0.5%)</td>
</tr>
<tr>
<td>Atrial fibrillation, n (%)</td>
<td>878 (7.0)</td>
<td>68,663 (7.7)</td>
<td>-0.7% (-1.1% to -0.2%)</td>
</tr>
<tr>
<td>Valvular disease, n (%)</td>
<td>358 (2.9)</td>
<td>29,276 (3.3)</td>
<td>-0.4% (-0.7% to -0.1%)</td>
</tr>
<tr>
<td>Cerebrovascular disease, n (%)</td>
<td>456 (3.7)</td>
<td>51,402 (5.8)</td>
<td>-2.1% (-2.5% to -1.8%)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>6,469 (51.8)</td>
<td>497,413 (55.9)</td>
<td>-4.1% (-4.9% to -3.2%)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>1,162 (9.3)</td>
<td>117,852 (13.2)</td>
<td>-3.9% (-4.4% to -3.4%)</td>
</tr>
<tr>
<td>Chronic lung disease, n (%)</td>
<td>850 (6.8)</td>
<td>64,158 (7.2)</td>
<td>-0.4% (-0.8% to 0.0%)</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease, n (%)</td>
<td>417 (3.3)</td>
<td>41,301 (4.6)</td>
<td>-1.3% (-1.6% to -1.0%)</td>
</tr>
<tr>
<td>Asthma, n (%)</td>
<td>442 (3.5)</td>
<td>24,322 (2.7)</td>
<td>+0.8% (+0.5% to +1.1%)</td>
</tr>
<tr>
<td>Cancer, n (%)</td>
<td>1,363 (10.9)</td>
<td>96,498 (10.8)</td>
<td>+0.1% (-0.5% to +0.6%)</td>
</tr>
<tr>
<td>Chronic kidney disease, n (%)</td>
<td>275 (2.2)</td>
<td>24,315 (2.7)</td>
<td>-0.5% (-0.8% to -0.3%)</td>
</tr>
<tr>
<td>Liver disease, n (%)</td>
<td>140 (1.1)</td>
<td>13,185 (1.5)</td>
<td>-0.4% (-0.5% to -0.2%)</td>
</tr>
<tr>
<td>Immunodeficiency, n (%)</td>
<td>483 (3.9)</td>
<td>41,293 (4.6)</td>
<td>-0.8% (-1.1% to -0.4%)</td>
</tr>
</tbody>
</table>
Clinical outcomes

• Hospitalization for influenza or pneumonia:

- QIV-SD (28 events): rVE 64.4% (95% CI 24.4% to 84.6%)
- QIV-HD (10 events)
Clinical outcomes

• Hospitalization for respiratory disease:

![Graph showing cumulative incidence over days for QIV-SD (40 events) and QIV-HD (24 events). The graph indicates a relative efficacy (rVE) of 40.1% with a 95% CI of -1.8% to 65.5%.)
Clinical outcomes

• Hospitalization for cardio-respiratory disease:

- QIV-SD (117 events)
 - rVE 12.1%
 - (95% CI -15.5% to 33.3%)

- QIV-HD (103 events)
Clinical outcomes

• Hospitalization for cardiovascular disease:

- QIV-SD (81 events)
- QIV-HD (82 events)

rVE -1.0%
(95% CI -39.1% to 26.6%)
Clinical outcomes

- Hospitalization for any cause:

 rVE 6.9%
 (95% CI -5.2% to 17.6%)
Clinical outcomes

- All-cause death:

 - QIV-SD (41 events): rVE 48.9% (95% CI 11.5% to 71.3%)
 - QIV-HD (21 events)
Additional cardiovascular outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>QIV-HD n = 6,245</th>
<th>QIV-SD n = 6,232</th>
<th>rVE (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitalization for myocardial infarction</td>
<td>11</td>
<td>10</td>
<td>-9.8 (-188.3 to 57.7)</td>
</tr>
<tr>
<td>Hospitalization for atrial fibrillation</td>
<td>31</td>
<td>44</td>
<td>29.7 (-13.9 to 57.1)</td>
</tr>
<tr>
<td>Hospitalization for stroke</td>
<td>19</td>
<td>10</td>
<td>-89.6 (-356.5 to 16.1)</td>
</tr>
<tr>
<td>Hospitalization for heart failure</td>
<td>8</td>
<td>11</td>
<td>27.4 (-98.1 to 74.7)</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>4</td>
<td>11</td>
<td>63.7 (-22.5 to 91.6)</td>
</tr>
</tbody>
</table>
Safety/adverse events

<table>
<thead>
<tr>
<th>Event</th>
<th>QIV-HD n = 6,248</th>
<th>QIV-SD n = 6,229</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any serious adverse event (SAE)</td>
<td>373 (6.0)</td>
<td>405 (6.5)</td>
<td>0.22</td>
</tr>
<tr>
<td>Any cardiovascular SAE</td>
<td>63 (1.0)</td>
<td>87 (1.4)</td>
<td>0.047</td>
</tr>
<tr>
<td>Any respiratory SAE</td>
<td>24 (0.4)</td>
<td>26 (0.4)</td>
<td>0.77</td>
</tr>
<tr>
<td>Any gastro-intestinal SAE</td>
<td>23 (0.4)</td>
<td>24 (0.4)</td>
<td>0.88</td>
</tr>
<tr>
<td>Any infection-related SAE</td>
<td>22 (0.4)</td>
<td>19 (0.3)</td>
<td>0.65</td>
</tr>
<tr>
<td>Any injury-related SAE</td>
<td>94 (1.5)</td>
<td>98 (1.6)</td>
<td>0.75</td>
</tr>
<tr>
<td>Fatal SAE</td>
<td>8 (0.1)</td>
<td>13 (0.2)</td>
<td>0.27</td>
</tr>
<tr>
<td>Any serious adverse reaction</td>
<td>1 (0.0)</td>
<td>4 (0.1)</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Limitations

• The study was not powered for clinical outcomes

• No adjustment for multiplicity was performed
 • The outcome findings should be considered hypothesis-generating only

• The trial was open-label
 • Not expected to affect hard clinical outcomes such as hospitalizations and deaths coded by physicians not involved in the trial and assessed using prespecified definitions

• Outcomes were retrieved directly from registries without adjudication
 • Several prior reports indicate that adjudication might not alter effect estimates in randomized trials1-2

Conclusions

- Conducting a pragmatic randomized trial of QIV-HD vs. QIV-SD utilizing existing infrastructure for recruitment, inclusion, randomization, and vaccination and relying solely on registry-based data collection was established as feasible.

- The design features can be applied to future fully powered vaccine trials as well as to trials investigating other interventions.

- In prespecified analyses of rVE, the incidence of hospitalization for influenza or pneumonia and all-cause mortality was significantly lower in the QIV-HD group compared with QIV-SD.
 - The findings require confirmation in a future fully powered trial.
Acknowledgements

ALL STUDY PARTICIPANTS

SPONSOR/CENTRAL TRIAL SITE – HERLEV AND GENTOFTE HOSPITAL
Tor Biering-Sørensen (Chief Investigator)
Niklas Dyrby Johansen
Daniel Modin
Anne Marie Reimer Jensen
Nino Emanuel Landler

DANSKE LÆGERS VACCINATIONS SERVICE
Carsten Schade Larsen (Principal Investigator)
Andrew Paulsen
John Madsen
Daniel Anderson
Helena Consortini Hobel
All vaccination personnel

SANOFI
Sandrine Samson
Camille Salamand
Matthew M. Loiacono

STATENS SERUM INSTITUT
Tyra Grove Krause
Palle Valentiner-Branth
Lasse Skafte Vestergaard

STUDY GROUP
Joshua Nealon
Scott D. Solomon
Brian L. Claggett
Martin J. Landray
Gunnar H. Gislason
Lars Køber
Jens Ulrik Stæhr Jensen
Pradeesh Sivapalan

THE DANISH HEALTH DATA AUTHORITY